Decentralized Federated Learning for Private Smart Healthcare: A Survey †

Guardado en:
书目详细资料
发表在:Mathematics vol. 13, no. 8 (2025), p. 1296
主要作者: Cheng, Haibo
其他作者: Qu Youyang, Liu, Wenjian, Gao Longxiang, Zhu Tianqing
出版:
MDPI AG
主题:
在线阅读:Citation/Abstract
Full Text + Graphics
Full Text - PDF
标签: 添加标签
没有标签, 成为第一个标记此记录!

MARC

LEADER 00000nab a2200000uu 4500
001 3194624195
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13081296  |2 doi 
035 |a 3194624195 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Cheng, Haibo  |u Faculty of Data Science, City University of Macau, Macau, China; d23092110113@cityu.edu.mo (H.C.); tqzhu@cityu.edu.mo (T.Z.) 
245 1 |a Decentralized Federated Learning for Private Smart Healthcare: A Survey † 
260 |b MDPI AG  |c 2025 
513 |a Literature Review 
520 3 |a This research explores the use of decentralized federated learning (DFL) in healthcare, focusing on overcoming the shortcomings of traditional centralized FL systems. DFL is proposed as a solution to enhance data privacy and improve system reliability by reducing dependence on central servers and increasing local data control. The research adopts a systematic literature review, following PRISMA guidelines, to provide a comprehensive understanding of DFL’s current applications and challenges within healthcare. The review synthesizes findings from various sources to identify the benefits and gaps in existing research, proposing research questions to further investigate the feasibility and optimization of DFL in medical environments. The study identifies four key challenges for DFL: security and privacy, communication efficiency, data and model heterogeneity, and incentive mechanisms. It discusses potential solutions, such as advanced cryptographic methods, optimized communication strategies, adaptive learning models, and robust incentive frameworks, to address these challenges. Furthermore, the research highlights the potential of DFL in enabling personalized healthcare through large, distributed data sets across multiple medical institutions. This study fills a critical gap in the literature by systematically reviewing DFL technologies in healthcare, offering valuable insights into applications, challenges, and future research directions that could improve the security, efficiency, and equity of healthcare data management. 
653 |a Data management 
653 |a Health care facilities 
653 |a Electronic health records 
653 |a Failure 
653 |a Collaboration 
653 |a System reliability 
653 |a Medical technology 
653 |a Communication 
653 |a Health care 
653 |a Privacy 
653 |a Sovereignty 
653 |a Data processing 
653 |a Medical equipment 
653 |a Taxonomy 
653 |a Blockchain 
653 |a Federated learning 
653 |a Heterogeneity 
653 |a Distributed processing 
653 |a Case studies 
653 |a Literature reviews 
653 |a Adaptive learning 
700 1 |a Qu Youyang  |u Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; gaolx@sdas.org 
700 1 |a Liu, Wenjian  |u Faculty of Data Science, City University of Macau, Macau, China; d23092110113@cityu.edu.mo (H.C.); tqzhu@cityu.edu.mo (T.Z.) 
700 1 |a Gao Longxiang  |u Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; gaolx@sdas.org 
700 1 |a Zhu Tianqing  |u Faculty of Data Science, City University of Macau, Macau, China; d23092110113@cityu.edu.mo (H.C.); tqzhu@cityu.edu.mo (T.Z.) 
773 0 |t Mathematics  |g vol. 13, no. 8 (2025), p. 1296 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194624195/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194624195/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194624195/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch