Knowledge-Inference-Based Intelligent Decision Making for Nonferrous Metal Mineral-Processing Flowsheet Design

Guardado en:
Bibliografiske detaljer
Udgivet i:Minerals vol. 15, no. 4 (2025), p. 374
Hovedforfatter: Yang, Jiawei
Andre forfattere: Sun Chuanyao, Zhou Junwu, Wang, Qingkai, Zhang Kanghui, Song, Tao
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3194635029
003 UK-CbPIL
022 |a 2075-163X 
024 7 |a 10.3390/min15040374  |2 doi 
035 |a 3194635029 
045 2 |b d20250101  |b d20251231 
084 |a 231539  |2 nlm 
100 1 |a Yang, Jiawei  |u School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; sunchy@cae.cn (C.S.); zhou_jw@bgrimm.com (J.Z.) 
245 1 |a Knowledge-Inference-Based Intelligent Decision Making for Nonferrous Metal Mineral-Processing Flowsheet Design 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the increasing diversification of ore types and the complexity of processing techniques in the mining industry, traditional decision-making methods for mineral processing flowsheets can no longer meet the high efficiency and intelligence requirements. This paper proposes a knowledge graph-based framework for constructing a mineral-processing design knowledge base and knowledge reasoning, aiming at providing intelligent and efficient decision support for mining engineers. This framework integrates Chinese NLP models for text vectorization, optimizes prompt generation through Retrieval Augmented Generation (RAG) technology, realizes knowledge graph construction, and implements knowledge reasoning for nonferrous metal mineral-processing design using large reasoning models. By analyzing the genetic characteristics of ores and the requirements of processing techniques, the framework outputs reasonable flowsheet designs, which could help engineers save research time and labor in optimizing processes, selecting suitable reagents, and adjusting process parameters. Through decision analysis of the mineral-processing flowsheets for three typical copper mines, the framework demonstrates its advantages in improving process flowsheet design, and shows good potential for further application in complex mineral-processing environments. 
653 |a Reagents 
653 |a Minerals 
653 |a Deep learning 
653 |a Knowledge bases (artificial intelligence) 
653 |a Heavy metals 
653 |a Optimization 
653 |a Anniversaries 
653 |a Mineralogy 
653 |a Decision support systems 
653 |a Semantic web 
653 |a Design 
653 |a Decision making 
653 |a Nonferrous metals 
653 |a Knowledge representation 
653 |a Mineral processing 
653 |a Decision analysis 
653 |a Artificial intelligence 
653 |a Graphs 
653 |a Mining industry 
653 |a Reasoning 
653 |a Engineers 
653 |a Ores 
653 |a Knowledge based engineering 
653 |a Natural language processing 
653 |a Complexity 
653 |a Process parameters 
700 1 |a Sun Chuanyao  |u School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; sunchy@cae.cn (C.S.); zhou_jw@bgrimm.com (J.Z.) 
700 1 |a Zhou Junwu  |u School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; sunchy@cae.cn (C.S.); zhou_jw@bgrimm.com (J.Z.) 
700 1 |a Wang, Qingkai  |u State Key Laboratory of Intelligent Optimized Manufacturing in Mining & Metallurgy Process, Beijing 102628, China; wang_qk@bgrimm.com (Q.W.); zhangkanghui@bgrimm.com (K.Z.); songtao@bgrimm.com (T.S.) 
700 1 |a Zhang Kanghui  |u State Key Laboratory of Intelligent Optimized Manufacturing in Mining & Metallurgy Process, Beijing 102628, China; wang_qk@bgrimm.com (Q.W.); zhangkanghui@bgrimm.com (K.Z.); songtao@bgrimm.com (T.S.) 
700 1 |a Song, Tao  |u State Key Laboratory of Intelligent Optimized Manufacturing in Mining & Metallurgy Process, Beijing 102628, China; wang_qk@bgrimm.com (Q.W.); zhangkanghui@bgrimm.com (K.Z.); songtao@bgrimm.com (T.S.) 
773 0 |t Minerals  |g vol. 15, no. 4 (2025), p. 374 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194635029/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194635029/fulltextwithgraphics/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194635029/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch