Investigation on the Full-Aperture Diffraction Efficiency of AOTF Based on Tellurium Dioxide Crystals
Guardado en:
| Publicado en: | Photonics vol. 12, no. 4 (2025), p. 335 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | The influence of acoustic field distribution and temperature variations on the full-aperture diffraction efficiency of non-collinear acousto-optic tunable filters (AOTFs) was investigated based on tellurium dioxide crystals. The strong acoustic anisotropy of the crystal induces non-uniform acoustic energy distribution, limiting the overall diffraction efficiency. To analyze this effect, the acoustic field distribution within a large-aperture AOTF was simulated, and the diffraction efficiency across different aperture regions was evaluated and experimentally validated. The results demonstrate that sound beam contraction and acoustic energy non-uniformity significantly reduce the peak diffraction efficiency and increase the power required to achieve high diffraction efficiency. Additionally, temperature-induced variations in acoustic velocity alter the acoustic field structure, leading to spatially non-uniform changes in diffraction efficiency. Both simulations and experimental measurements confirm that while the overall impact of temperature on full-aperture diffraction efficiency remains relatively small, localized variations are pronounced, highlighting potential inaccuracies in single-beam-based efficiency measurements. |
|---|---|
| ISSN: | 2304-6732 |
| DOI: | 10.3390/photonics12040335 |
| Fuente: | Advanced Technologies & Aerospace Database |