A Survey of Sampling Methods for Hyperspectral Remote Sensing: Addressing Bias Induced by Random Sampling

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote Sensing vol. 17, no. 8 (2025), p. 1373
Hlavní autor: Decker, Kevin T
Další autoři: Borghetti, Brett J
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3194640399
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17081373  |2 doi 
035 |a 3194640399 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Decker, Kevin T 
245 1 |a A Survey of Sampling Methods for Hyperspectral Remote Sensing: Addressing Bias Induced by Random Sampling 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Identified as early as 2000, the challenges involved in developing and assessing remote sensing models with small datasets remain, with one key issue persisting: the misuse of random sampling to generate training and testing data. This practice often introduces a high degree of correlation between the sets, leading to an overestimation of model generalizability. Despite the early recognition of this problem, few researchers have investigated its nuances or developed effective sampling techniques to address it. Our survey highlights that mitigation strategies to reduce this bias remain underutilized in practice, distorting the interpretation and comparison of results across the field. In this work, we introduce a set of desirable characteristics to evaluate sampling algorithms, with a primary focus on their tendency to induce correlation between training and test data, while also accounting for other relevant factors. Using these characteristics, we survey 146 articles, identify 16 unique sampling algorithms, and evaluate them. Our evaluation reveals two broad archetypes of sampling techniques that effectively mitigate correlation and are suitable for model development. 
653 |a Remote sensing 
653 |a Bias 
653 |a Datasets 
653 |a Algorithms 
653 |a Sampling methods 
653 |a Correlation 
653 |a Statistical sampling 
653 |a Training 
653 |a Surveys 
653 |a Methods 
653 |a Automation 
653 |a Random sampling 
700 1 |a Borghetti, Brett J 
773 0 |t Remote Sensing  |g vol. 17, no. 8 (2025), p. 1373 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194640399/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194640399/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194640399/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch