Orbital Design Optimization for Large-Scale SAR Constellations: A Hybrid Framework Integrating Fuzzy Rules and Chaotic Sequences

Salvato in:
Dettagli Bibliografici
Pubblicato in:Remote Sensing vol. 17, no. 8 (2025), p. 1430
Autore principale: Liu, Dacheng
Altri autori: Deng Yunkai, Chang, Sheng, Zhu Mengxia, Zhang, Yusheng, Zhang Zixuan
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3194641834
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17081430  |2 doi 
035 |a 3194641834 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Liu, Dacheng  |u Space Microwave Remote Sensing System Department, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; dcliu@mail.ie.ac.cn (D.L.); ykdeng@mail.ie.ac.cn (Y.D.); zhangyusheng@aircas.ac.cn (Y.Z.); zhangzixuan22@mails.ucas.ac.cn (Z.Z.) 
245 1 |a Orbital Design Optimization for Large-Scale SAR Constellations: A Hybrid Framework Integrating Fuzzy Rules and Chaotic Sequences 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Synthetic Aperture Radar (SAR) constellations have become a key technology for disaster monitoring, terrain mapping, and ocean surveillance due to their all-weather and high-resolution imaging capabilities. However, the design of large-scale SAR constellations faces multi-objective optimization challenges, including short revisit cycles, wide coverage, high-performance imaging, and cost-effectiveness. Traditional optimization methods, such as genetic algorithms, suffer from issues like parameter dependency, slow convergence, and the complexity of multi-objective trade-offs. To address these challenges, this paper proposes a hybrid optimization framework that integrates chaotic sequence initialization and fuzzy rule-based decision mechanisms to solve high-dimensional constellation design problems. The framework generates the initial population using chaotic mapping, adaptively adjusts crossover strategies through fuzzy logic, and achieves multi-objective optimization via a weighted objective function. The simulation results demonstrate that the proposed method outperforms traditional algorithms in optimization performance, convergence speed, and robustness. Specifically, the average fitness value of the proposed method across 20 independent runs improved by 40.47% and 35.48% compared to roulette wheel selection and tournament selection, respectively. Furthermore, parameter sensitivity analysis and robustness experiments confirm the stability and superiority of the proposed method under varying parameter configurations. This study provides an efficient and reliable solution for the orbital design of large-scale SAR constellations, offering significant engineering application value. 
653 |a Image resolution 
653 |a Algorithms 
653 |a Sensitivity analysis 
653 |a Parameter sensitivity 
653 |a Fuzzy logic 
653 |a Altitude 
653 |a Multiple objective analysis 
653 |a Design 
653 |a Convergence 
653 |a Pareto optimum 
653 |a Energy consumption 
653 |a Cost effectiveness 
653 |a Efficiency 
653 |a Design optimization 
653 |a Terrain mapping 
653 |a Genetic algorithms 
653 |a Synthetic aperture radar 
653 |a Decision making 
653 |a Objective function 
653 |a Cost analysis 
653 |a Earthquakes 
653 |a Robustness (mathematics) 
653 |a Satellites 
700 1 |a Deng Yunkai  |u Space Microwave Remote Sensing System Department, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; dcliu@mail.ie.ac.cn (D.L.); ykdeng@mail.ie.ac.cn (Y.D.); zhangyusheng@aircas.ac.cn (Y.Z.); zhangzixuan22@mails.ucas.ac.cn (Z.Z.) 
700 1 |a Chang, Sheng  |u Space Microwave Remote Sensing System Department, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; dcliu@mail.ie.ac.cn (D.L.); ykdeng@mail.ie.ac.cn (Y.D.); zhangyusheng@aircas.ac.cn (Y.Z.); zhangzixuan22@mails.ucas.ac.cn (Z.Z.) 
700 1 |a Zhu Mengxia  |u Long March Launch Vehicle Technology Co., Ltd., Beijing 100049, China; zhumx@brit.com.cn 
700 1 |a Zhang, Yusheng  |u Space Microwave Remote Sensing System Department, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; dcliu@mail.ie.ac.cn (D.L.); ykdeng@mail.ie.ac.cn (Y.D.); zhangyusheng@aircas.ac.cn (Y.Z.); zhangzixuan22@mails.ucas.ac.cn (Z.Z.) 
700 1 |a Zhang Zixuan  |u Space Microwave Remote Sensing System Department, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; dcliu@mail.ie.ac.cn (D.L.); ykdeng@mail.ie.ac.cn (Y.D.); zhangyusheng@aircas.ac.cn (Y.Z.); zhangzixuan22@mails.ucas.ac.cn (Z.Z.) 
773 0 |t Remote Sensing  |g vol. 17, no. 8 (2025), p. 1430 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194641834/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194641834/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194641834/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch