Fractional Landweber Regularization Method for Identifying the Source Term of the Time Fractional Diffusion-Wave Equation

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Symmetry vol. 17, no. 4 (2025), p. 554
Egile nagusia: Liang Zhenyu
Beste egile batzuk: Jiang, Qin, Liu, Qingsong, Xu Luopeng, Yang, Fan
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3194646515
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17040554  |2 doi 
035 |a 3194646515 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Liang Zhenyu  |u Key Laboratory of Photonic and Optical Detection in Civil Aviation, School of Science, Civil Aviation Flight University of China, Guanghan 618307, China 
245 1 |a Fractional Landweber Regularization Method for Identifying the Source Term of the Time Fractional Diffusion-Wave Equation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In this paper, the inverse problem of identifying the source term of the time fractional diffusion-wave equation is studied. This problem is ill-posed, i.e., the solution (if it exists) does not depend on the measurable data. Under the priori bound condition, the condition stable result and the optimal error bound are all obtained. The fractional Landweber iterative regularization method is used to solve this inverse problem. Based on the priori regularization parameter selection rule and the posteriori regularization parameter selection rule, the error estimation between the regularization solution and the exact solution is obtained. Moreover, the error estimations are all order optimal. At the end, three numerical examples are given to prove the effectiveness and stability of this regularization method. 
653 |a Exact solutions 
653 |a Regularization methods 
653 |a Regularization 
653 |a Errors 
653 |a Wave equations 
653 |a Inverse problems 
653 |a Viscoelasticity 
653 |a Parameters 
700 1 |a Jiang, Qin  |u Key Laboratory of Photonic and Optical Detection in Civil Aviation, School of Science, Civil Aviation Flight University of China, Guanghan 618307, China 
700 1 |a Liu, Qingsong  |u Key Laboratory of Photonic and Optical Detection in Civil Aviation, School of Science, Civil Aviation Flight University of China, Guanghan 618307, China 
700 1 |a Xu Luopeng  |u Key Laboratory of Photonic and Optical Detection in Civil Aviation, School of Science, Civil Aviation Flight University of China, Guanghan 618307, China 
700 1 |a Yang, Fan  |u School of Science, Lanzhou University of Technology, Lanzhou 730050, China 
773 0 |t Symmetry  |g vol. 17, no. 4 (2025), p. 554 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194646515/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194646515/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194646515/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch