A Novel Management Approach for Optimal Operation of Hybrid AC-DC Microgrid in the Presence of Wind and Load Uncertainties

Guardado en:
Detalles Bibliográficos
Publicado en:Systems vol. 13, no. 4 (2025), p. 233
Autor principal: Hamed, Zeinoddini-Meymand
Otros Autores: Safipour Reza, Namdari Farhad
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The optimal operation of a hybrid AC-DC microgrid is investigated in this study. The operation of an AC microgrid connected to the main grid and an islanded DC microgrid has been examined under three management approaches. In the first approach, two microgrids are not connected, and the DC microgrid is operated in the islanded mode. In the second and third approaches, AC and DC microgrids are connected. The main difference between these two approaches is the energy management framework. In the second approach, each microgrid has its own management system, while the third approach integrates both into a single energy management system to form an AC-DC microgrid that minimizes overall operational costs. The main goal of the proposed model is to minimize the operating costs of two microgrids over a 24 h period. The investigated AC microgrid includes a microturbine, wind turbine and diesel generator in order to supply the residential load profile, and the DC microgrid includes an energy storage system, fuel cell, wind turbine and solar panel in order to supply the commercial load profile. Simulations are performed first with a wind and load scenario in order to show and compare the optimal points of using the decision variables in three approaches. Finally, in order to prove the effectiveness of the proposed method in the presence of uncertainties, the cost distribution function for the three approaches is presented by means of Monte Carlo simulation. Applying the proposed model results in the following the cost reduction: 67.9% in the DC microgrid, 14.2% in the AC microgrid and 24.4% overall. This reduction is primarily attributed to the microgrid central energy management system, which decreases reliance on the main grid and instead utilizes alternative sources such as fuel cells. Comparing the first and third approaches, the fuel cell’s contribution to supplying microgrid loads increased by 29%, while the main grid’s participation decreased by 26%.
ISSN:2079-8954
DOI:10.3390/systems13040233
Fuente:Advanced Technologies & Aerospace Database