Self-Organizing Maps-Assisted Variational Autoencoder for Unsupervised Network Anomaly Detection

Salvato in:
Dettagli Bibliografici
Pubblicato in:Symmetry vol. 17, no. 4 (2025), p. 520
Autore principale: Huang, Hailong
Altri autori: Yang, Jiahong, Zeng Hang, Wang, Yaqin, Xiao Liuming
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3194647205
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17040520  |2 doi 
035 |a 3194647205 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Huang, Hailong 
245 1 |a Self-Organizing Maps-Assisted Variational Autoencoder for Unsupervised Network Anomaly Detection 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In network intrusion detection systems (NIDS), conventional supervised learning approaches remain constrained by their reliance on labor-intensive labeled datasets, especially in evolving network ecosystems. Although unsupervised learning offers a viable alternative, current methodologies frequently face challenges in managing high-dimensional feature spaces and achieving optimal detection performance. To overcome these limitations, this study proposes a self-organizing maps-assisted variational autoencoder (SOVAE) framework. The SOVAE architecture employs feature correlation graphs combined with the Louvain community detection algorithm to conduct feature selection. The processed data—characterized by reduced dimensionality and clustered structure—is subsequently projected through self-organizing maps to generate cluster-based labels. These labels are further incorporated into the symmetric encoding-decoding reconstruction process of the VAE to enhance data reconstruction quality. Anomaly detection is implemented through quantitative assessment of reconstruction discrepancies and SOM deviations. Experimental results show that SOVAE achieves F1 scores of 0.983 (±0.005) on UNSW-NB15 and 0.875 (±0.008) on CICIDS2017, outperforming mainstream unsupervised baselines. 
653 |a Accuracy 
653 |a Labels 
653 |a Datasets 
653 |a Deep learning 
653 |a Self organizing maps 
653 |a Supervised learning 
653 |a Optimization 
653 |a Unsupervised learning 
653 |a Algorithms 
653 |a Encoding-Decoding 
653 |a Anomalies 
653 |a Cluster analysis 
653 |a Clustering 
653 |a Reconstruction 
653 |a Machine learning 
653 |a Statistical methods 
653 |a Intrusion detection systems 
700 1 |a Yang, Jiahong 
700 1 |a Zeng Hang 
700 1 |a Wang, Yaqin 
700 1 |a Xiao Liuming 
773 0 |t Symmetry  |g vol. 17, no. 4 (2025), p. 520 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194647205/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194647205/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194647205/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch