The Financial Institution Text Data Mining and Value Analysis Model Based on Big Data and Natural Language Processing

Enregistré dans:
Détails bibliographiques
Publié dans:Journal of Organizational and End User Computing vol. 37, no. 1 (2025), p. 1-41
Auteur principal: Yang, Juan
Autres auteurs: Bai, Yu, Gong, Jie, Han, Menghui
Publié:
IGI Global
Sujets:
Accès en ligne:Citation/Abstract
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3195634889
003 UK-CbPIL
022 |a 1546-2234 
022 |a 1546-5012 
022 |a 1043-6464 
022 |a 1063-2239 
024 7 |a 10.4018/JOEUC.374213  |2 doi 
035 |a 3195634889 
045 2 |b d20250101  |b d20250331 
084 |a 11187  |2 nlm 
100 1 |a Yang, Juan  |u Chongqing Technology and Business University, China 
245 1 |a The Financial Institution Text Data Mining and Value Analysis Model Based on Big Data and Natural Language Processing 
260 |b IGI Global  |c 2025 
513 |a Journal Article 
520 3 |a Financial markets are inherently complex and influenced by a variety of factors, making it challenging to predict trends and detect key events. Traditional models often struggle to integrate both structured, or numerical, and unstructured, or textual, data; additionally, they fail to capture temporal dependencies or the dynamic relationships between financial entities. To address this, the multidimensional integrated model for financial text mining and value analysis (MI-FinText), was proposed. MI-FinText integrated multi-task learning, temporal graph convolutional networks and dynamic knowledge graph construction. MI-FinText simultaneously performed sentiment analysis, event detection, and value prediction by learning shared representations across tasks and modeling time-dependent relationships between financial events. MI-FinText continuously updated a dynamic knowledge graph to reflect the evolving financial landscape, enabling real-time insights. 
653 |a Data processing 
653 |a Time dependence 
653 |a Data mining 
653 |a Deep learning 
653 |a Big Data 
653 |a Trends 
653 |a Artificial neural networks 
653 |a Social networks 
653 |a Value 
653 |a Prices 
653 |a Financial institutions 
653 |a Sentiment analysis 
653 |a Knowledge representation 
653 |a Learning 
653 |a Language attitudes 
653 |a Value analysis 
653 |a Time 
653 |a Knowledge 
653 |a Securities markets 
653 |a Natural language processing 
653 |a Volatility 
653 |a Unstructured data 
653 |a Financial analysis 
653 |a Information retrieval 
653 |a Real time 
700 1 |a Bai, Yu  |u Chongqing Technology and Business University, China 
700 1 |a Gong, Jie  |u Chongqing Technology and Business University, China 
700 1 |a Han, Menghui  |u Chongqing Technology and Business University, China 
773 0 |t Journal of Organizational and End User Computing  |g vol. 37, no. 1 (2025), p. 1-41 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3195634889/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3195634889/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch