Recalibration of four empirical reference crop evapotranspiration models using a hybrid Differential Evolution-Grey Wolf Optimizer algorithm

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:International Journal of Agricultural and Biological Engineering vol. 18, no. 1 (Feb 2025), p. 173
Yazar: Zhao, Long
Diğer Yazarlar: Yang, Shuo, Zhao, Xinbo, Shi, Yi, Feng, Shiming, Xing, Xuguang, Chen, Shuangchen
Baskı/Yayın Bilgisi:
International Journal of Agricultural and Biological Engineering (IJABE)
Konular:
Online Erişim:Citation/Abstract
Full Text
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3195839192
003 UK-CbPIL
022 |a 1934-6344 
022 |a 1934-6352 
024 7 |a 10.25165/j.ijabe.20251801.9380  |2 doi 
035 |a 3195839192 
045 2 |b d20250201  |b d20250228 
084 |a 204230  |2 nlm 
100 1 |a Zhao, Long  |u College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; 
245 1 |a Recalibration of four empirical reference crop evapotranspiration models using a hybrid Differential Evolution-Grey Wolf Optimizer algorithm 
260 |b International Journal of Agricultural and Biological Engineering (IJABE)  |c Feb 2025 
513 |a Journal Article 
520 3 |a Accurate estimation of reference crop evapotranspiration (ET0) is essential for water resource management and irrigation scheduling. A multitude of empirical models have been employed to estimate ET0, yielding satisfactory outcomes. However, the performance of each model is contingent upon the empirical parameters utilized. This study examines the applicability of four empirical ET0 models, namely the Makkink (Mak), Irmark-Allen (IA), improved Baier-Robertson (MBR), and Brutsaert-Stricker (BS) models. Meteorological data from 24 weather stations across various regions in China were procured and employed to assess the ET0 simulation results. The study employed the Differential Evolution (DE) optimization algorithm, Grey Wolf Optimizer (GWO) algorithm, and a hybrid algorithm that combines DE and GWO algorithms (DE-GWO algorithm) to optimize the parameters of the four empirical models. The findings revealed that the optimization algorithms significantly enhanced the regional adaptability of the four models, particularly the BS model. The DE-GWO algorithm demonstrated superior optimization performance (RMSE=0.055-0.372, R2=0.912-0.998, MAE=0.037-0.311, and FS=0.864-0.982) compared to the DE (RMSE=0.101-2.015, i?2=0.529-0.997, MAE=0.075-1.695, and FS=0.383-0.967) and GWO (RMSE=0.158-0.915, i?2=0.694-0.987, MAE=0.111-0.701, and FS=0.688-0.947) algorithms. The DE-GWO-optimized BS model was the most accurate and improved, followed by the MBR model. The IA and Mak models also showed slightly better performance after optimization with the DE-GWO algorithm. The DE-GWO-optimized BS model performed better in the southern agricultural region than in other regions. It is recommended to utilize the DE-GWO to enhance the accurate prediction of empirical ET0 models across the nine agricultural regions of China. 
651 4 |a China 
653 |a Accuracy 
653 |a Humidity 
653 |a Water resources management 
653 |a Datasets 
653 |a Evapotranspiration 
653 |a Adaptability 
653 |a Algorithms 
653 |a Irrigation scheduling 
653 |a Calibration 
653 |a Population growth 
653 |a Irrigation water 
653 |a Radiation 
653 |a Resource management 
653 |a Weather stations 
653 |a Evolutionary computation 
653 |a Temperature 
653 |a Optimization 
653 |a Regions 
653 |a Resource scheduling 
653 |a Crops 
653 |a Optimization algorithms 
653 |a Parameters 
653 |a Meteorological data 
653 |a Evolution 
653 |a Environmental 
700 1 |a Yang, Shuo  |u College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling 712100, Shaanxi, China 
700 1 |a Zhao, Xinbo  |u College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471000, Henan, China 
700 1 |a Shi, Yi  |u College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471000, Henan, China 
700 1 |a Feng, Shiming  |u College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China 
700 1 |a Xing, Xuguang 
700 1 |a Chen, Shuangchen 
773 0 |t International Journal of Agricultural and Biological Engineering  |g vol. 18, no. 1 (Feb 2025), p. 173 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3195839192/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3195839192/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3195839192/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch