A novel optimization scheme for structure and balance of compound balanced beam pumping units using the PSO, GA, and GWO algorithms

Guardado en:
Detalles Bibliográficos
Publicado en:Petroleum Science vol. 22, no. 3 (Mar 2025), p. 1340
Autor principal: Wang, Jie
Otros Autores: Guo, Quan-Ying, Fu, Cheng-Long, Dai, Gang, Xia, Cheng-Yu, Qian, Li-Qin
Publicado:
KeAi Publishing Communications Ltd
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3195844065
003 UK-CbPIL
022 |a 1672-5107 
022 |a 1995-8226 
024 7 |a 10.1016/j.petsci.2025.01.007  |2 doi 
035 |a 3195844065 
045 2 |b d20250301  |b d20250331 
100 1 |a Wang, Jie  |u School of Mechanical Engineering, Yangtze University, Jingzhou, 434023, Hubei, China 
245 1 |a A novel optimization scheme for structure and balance of compound balanced beam pumping units using the PSO, GA, and GWO algorithms 
260 |b KeAi Publishing Communications Ltd  |c Mar 2025 
513 |a Journal Article 
520 3 |a The beam pumping unit (BPU) remains the most stable and reliable equipment for crude oil lifting. Despite its simple four-link mechanism, the structural design of the BPU presents a constrained singleobjective optimization problem. Currently, a comprehensive framework for the structural design and optimization of compound balanced BPUs is lacking. Therefore, this study proposes a novel structural design scheme for BPUs, aiming to meet the practical needs of designers and operators by sequentially optimizing both the dynamic characteristics and balance properties of the BPUs. A dynamic model of compound balanced BPU was established based on D'Alembert's principle. The constraints for structural dimensions were formulated based on the actual operational requirements and design experience with BPUs. To optimize the structure, three algorithms were employed: the particle swarm optimization (PSO) algorithm, the genetic algorithm (GA), and the gray wolf optimization (GWO) algorithm. Each newly generated individuals are regulated by constraints to ensure the rationality of the outcomes. Furthermore, the integration of three algorithms ensures the increased likelihood of attaining the global optimal solution. The polished rod acceleration of the optimized structure is significantly reduced, and the dynamic characteristics of the up and down strokes are essentially symmetrical. Additionally, these three algorithms are also applied to the balance optimization of BPUs based on the measured dynamometer card. The calculation results demonstrate that the GWO-based optimization method exhibits excellent robustness in terms of structural optimization by enhancing the operational smoothness of the BPU, as well as in balance optimization by achieving energy conservation. By applying the optimization scheme proposed in this paper, the CYJW7-3-23HF type of BPU was designed, achieving a maximum polished rod acceleration of 0.675 m/s2 when operating at a stroke of 6 min-1. When deployed in two wells, the rootmean-square (RMS) torque was minimized, reaching values of 7.539 kN·m and 12.921 kN·m, respectively. The proposed design method not only contributes to the personalized customization but also improves the design efficiency of compound balanced BPUs. 
653 |a Particle swarm optimization 
653 |a Structural engineering 
653 |a Structural design 
653 |a Dynamic characteristics 
653 |a Energy conservation 
653 |a Pump jacks 
653 |a Design 
653 |a Dynamic models 
653 |a Pareto optimum 
653 |a Crude oil 
653 |a Algorithms 
653 |a Case studies 
653 |a Design optimization 
653 |a Pumping 
653 |a Smoothness 
653 |a Genetic algorithms 
653 |a Oil fields 
653 |a Torque 
653 |a Steel pipes 
653 |a Energy efficiency 
653 |a Methods 
653 |a Designers 
653 |a Constraints 
653 |a Optimization algorithms 
653 |a Economic 
700 1 |a Guo, Quan-Ying  |u School of Mechanical Engineering, Yangtze University, Jingzhou, 434023, Hubei, China 
700 1 |a Fu, Cheng-Long  |u School of Mechanical Engineering, Yangtze University, Jingzhou, 434023, Hubei, China 
700 1 |a Dai, Gang  |u Jingzhou Mingde Technology Co., LTD, Jingzhou, 434000, Hubei, China 
700 1 |a Xia, Cheng-Yu  |u School of Mechanical Engineering, Yangtze University, Jingzhou, 434023, Hubei, China 
700 1 |a Qian, Li-Qin 
773 0 |t Petroleum Science  |g vol. 22, no. 3 (Mar 2025), p. 1340 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3195844065/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3195844065/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3195844065/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch