Control signal dimensionality depends on limb dynamics

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 4 (Apr 2025), p. e0322092
Autor principal: Korol, Anna S
Otros Autores: Gritsenko, Valeriya
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3198104526
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0322092  |2 doi 
035 |a 3198104526 
045 2 |b d20250401  |b d20250430 
084 |a 174835  |2 nlm 
100 1 |a Korol, Anna S 
245 1 |a Control signal dimensionality depends on limb dynamics 
260 |b Public Library of Science  |c Apr 2025 
513 |a Journal Article 
520 3 |a Neural control of movement has to overcome the problem of redundancy in the multidimensional musculoskeletal system. The problem can be solved by reducing the dimensionality of the control space of motor commands, i.e., through muscle synergies or motor primitives. Evidence for this solution exists; multiple studies have obtained muscle synergies using decomposition methods. These synergies vary across different workspaces and are present in both dominant and non-dominant limbs. We explore the effect of biomechanical constraints on the dimensionality of control space. We also test the generalizability of prior conclusions that muscle activity profiles can be explained by applied moments about the limb joints that compensate for dynamic and gravitational forces during reaching. These muscle moments derived from motion capture represent the combined actions of muscle contractions that are under the control of the nervous system. Here, we test the hypothesis that the control space dimensionality is shaped by the complexity of dynamic and gravitational forces. To achieve this, we examined muscle activity patterns across reaching movements in different directions, starting from different postures performed bilaterally by healthy individuals. We used principal component analysis to evaluate the contribution of individual muscles to producing muscle moments across different reaching directions and in both dominant and non-dominant limbs. Extending our earlier work, we find that muscle activity profiles are described well by muscle moment profiles during reaching by both dominant and non-dominant arms. Our results further show that the dimensionality of control signals depends on the complexity of muscle moments, supporting the primary hypothesis. Our results suggest that the neural control strategy for limb dynamics compensation involves the modulation of the co-contraction of proximal and distal antagonistic muscles that change limb stiffness. 
653 |a Kinematics 
653 |a Muscular function 
653 |a Gravity 
653 |a Muscles 
653 |a Principal components analysis 
653 |a Electromyography 
653 |a Motor task performance 
653 |a Limbs 
653 |a Motion capture 
653 |a Redundancy 
653 |a Biomechanics 
653 |a Viscosity 
653 |a Nervous system 
653 |a Musculoskeletal system 
653 |a Muscle contraction 
653 |a Hypotheses 
653 |a Complexity 
653 |a Muscle function 
653 |a Spinal cord 
653 |a Posture 
653 |a Activity patterns 
653 |a Environmental 
700 1 |a Gritsenko, Valeriya 
773 0 |t PLoS One  |g vol. 20, no. 4 (Apr 2025), p. e0322092 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3198104526/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3198104526/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3198104526/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch