GEE‐PICX: generating cloud‐free Sentinel‐2 and Landsat image composites and spectral indices for custom areas and time frames – a Google Earth Engine web application

Guardat en:
Dades bibliogràfiques
Publicat a:Ecography vol. 2025, no. 5 (May 1, 2025)
Autor principal: Pflumm, Luisa
Altres autors: Kang, Hyeonmin, Wilting, Andreas, Niedballa, Jürgen
Publicat:
John Wiley & Sons, Inc.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3199081359
003 UK-CbPIL
022 |a 0906-7590 
022 |a 1600-0587 
022 |a 0105-9327 
024 7 |a 10.1111/ecog.07385  |2 doi 
035 |a 3199081359 
045 0 |b d20250501 
084 |a 166638  |2 nlm 
100 1 |a Pflumm, Luisa  |u Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany 
245 1 |a GEE‐PICX: generating cloud‐free Sentinel‐2 and Landsat image composites and spectral indices for custom areas and time frames – a Google Earth Engine web application 
260 |b John Wiley & Sons, Inc.  |c May 1, 2025 
513 |a Journal Article 
520 3 |a Earth observation satellites are collecting vast amounts of free and openly accessible data with immense potential to support environmental, economic, and social fields. As the availability of remotely sensed data increases, so do the methods for accessing and processing it. Many solutions exist for creating cloud‐free image composites from often cloudy satellite data, but these typically require coding skills or in‐depth training in remote‐sensing techniques. This technical barrier prevents many researchers and practitioners from utilising available satellite data. The few user‐friendly solutions that exist often have limitations in terms of data export size and quality assessment capabilities. We developed GEE‐PICX, a web application with an intuitive graphical user interface on the cloud computing platform Google Earth Engine. This tool addresses the aforementioned challenges by creating cloud‐free, analysis‐ready image composites for user‐defined areas and time periods. It utilises Sentinel‐2 and Landsat 5, 7, 8, and 9 images and offers global coverage. Users can aggregate image composites annually or seasonally, with data availability starting from 1984 (the launch of Landsat 5). The workflow automatically filters all available satellite data according to user input, removing clouds, cloud shadows, and snow. It provides spectral band information, calculates various thematic spectral indices (including vegetation, burn, built‐up area, bare soil, snow, moisture, and water indices), and includes a quality assessment band indicating the number of valid scenes per pixel. GEE‐PICX offers a customizable tool for creating custom data products from freely accessible satellite data, catering to researchers with limited remote sensing experience. It provides extensive temporal and global spatial coverage, with server‐side processing eliminating hardware constraints. The tool facilitates easy export of time series as ready‐to‐use rasters with numerous spectral indices, supporting environmental programmes and biodiversity research across various disciplines. Keywords: cloud masking, cloud‐free image mosaic, environmental monitoring, remote sensing, satellite imagery, time series 
610 4 |a US Geological Survey 
651 4 |a United States--US 
653 |a Data transfer (computers) 
653 |a Software 
653 |a Environmental monitoring 
653 |a Accessibility 
653 |a Datasets 
653 |a Snow 
653 |a Applications programs 
653 |a Landsat 
653 |a Satellite imagery 
653 |a Workflow 
653 |a Remote sensing 
653 |a Data processing 
653 |a Remote monitoring 
653 |a Image processing 
653 |a Graphical user interface 
653 |a Availability 
653 |a Time series 
653 |a Composite materials 
653 |a Quality assessment 
653 |a Exports 
653 |a Quality control 
653 |a Cloud computing 
653 |a Design 
653 |a Biodiversity 
653 |a Satellite observation 
653 |a Landsat satellites 
653 |a Earth 
653 |a Environmental 
700 1 |a Kang, Hyeonmin  |u Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany 
700 1 |a Wilting, Andreas  |u Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany 
700 1 |a Niedballa, Jürgen  |u Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany 
773 0 |t Ecography  |g vol. 2025, no. 5 (May 1, 2025) 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3199081359/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3199081359/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3199081359/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch