Revealing hidden sources of uncertainty in biodiversity trend assessments

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Ecography vol. 2025, no. 5 (May 1, 2025)
Hoofdauteur: Wilkes, Martin A.
Andere auteurs: Mckenzie, Morwenna, Johnson, Andrew, Hassall, Christopher, Kelly, Martyn, Willby, Nigel, Brown, Lee E.
Gepubliceerd in:
John Wiley & Sons, Inc.
Onderwerpen:
Online toegang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3199081917
003 UK-CbPIL
022 |a 0906-7590 
022 |a 1600-0587 
022 |a 0105-9327 
024 7 |a 10.1111/ecog.07441  |2 doi 
035 |a 3199081917 
045 0 |b d20250501 
084 |a 166638  |2 nlm 
100 1 |a Wilkes, Martin A.  |u School of Life Sciences, University of Essex, Colchester, UK 
245 1 |a Revealing hidden sources of uncertainty in biodiversity trend assessments 
260 |b John Wiley & Sons, Inc.  |c May 1, 2025 
513 |a Journal Article 
520 3 |a Idiosyncratic decisions during the biodiversity trend assessment process may limit reproducibility, whilst ‘hidden' uncertainty due to collection bias, taxonomic incompleteness, and variable taxonomic resolution may limit the reliability of reported trends. We model alternative decisions made during assessment of taxon‐level abundance and distribution trends using an 18‐year time series covering freshwater fish, invertebrates, and primary producers in England. Through three case studies, we test for collection bias and quantify uncertainty stemming from data preparation and model specification decisions, assess the risk of conflating trends for individual species when aggregating data to higher taxonomic ranks, and evaluate the potential uncertainty stemming from taxonomic incompleteness. Choice of optimizer algorithm and data filtering to obtain more complete time series explained 52.5% of the variation in trend estimates, obscuring the signal from taxon‐specific trends. The use of penalized iteratively reweighted least squares, a simplified approach to model optimization, was the most important source of uncertainty. Application of increasingly harsh data filters exacerbated collection bias in the modelled dataset. Aggregation to higher taxonomic ranks was a significant source of uncertainty, leading to conflation of trends among protected and invasive species. We also found potential for substantial positive bias in trend estimation across six fish populations which were not consistently recorded in all operational areas. We complement analyses of observational data with in silico experiments in which monitoring and trend assessment processes were simulated to enable comparison of trend estimates with known underlying trends, confirming that collection bias, data filtering and taxonomic incompleteness have significant negative impacts on the accuracy of trend estimates. Identifying and managing uncertainty in biodiversity trend assessment is crucial for informing effective conservation policy and practice. We highlight several serious sources of uncertainty affecting biodiversity trend analyses and present tools to improve the transparency of decisions made during the trend assessment process. 
651 4 |a United Kingdom--UK 
651 4 |a England 
653 |a Plankton 
653 |a Freshwater fish 
653 |a Invasive species 
653 |a Bias 
653 |a Datasets 
653 |a Trends 
653 |a Estimates 
653 |a Taxonomy 
653 |a Biodiversity 
653 |a Data processing 
653 |a Approximation 
653 |a Data analysis 
653 |a Protected species 
653 |a Risk assessment 
653 |a Time series 
653 |a Fish 
653 |a Uncertainty 
653 |a Fish populations 
653 |a Case studies 
653 |a Aquatic plants 
653 |a Invertebrates 
653 |a Introduced species 
653 |a Algorithms 
653 |a Environmental policy 
653 |a Rivers 
653 |a Filtration 
653 |a Decisions 
653 |a Taxa 
653 |a Environmental 
700 1 |a Mckenzie, Morwenna  |u Geography and Environment, Loughborough University, Loughborough, UK 
700 1 |a Johnson, Andrew  |u School of Geography & water@leeds, University of Leeds, Leeds, UK 
700 1 |a Hassall, Christopher  |u School of Biology, University of Leeds, Leeds, UK 
700 1 |a Kelly, Martyn  |u Bowburn Consultancy, Durham, UK 
700 1 |a Willby, Nigel  |u Department of Biological and Environmental Sciences, University of Stirling, Stirling, UK 
700 1 |a Brown, Lee E.  |u School of Geography & water@leeds, University of Leeds, Leeds, UK 
773 0 |t Ecography  |g vol. 2025, no. 5 (May 1, 2025) 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3199081917/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3199081917/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3199081917/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch