Improved Unit Commitment with Accurate Dynamic Scenarios Clustering Based on Multi-Parametric Programming and Benders Decomposition

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Energy Engineering : Journal of the Association of Energy Engineers vol. 121, no. 6 (2024), p. 1557
المؤلف الرئيسي: Zhang, Zhi
مؤلفون آخرون: Huang, Haiyu, Xiong, Wei, Zhou, Yijia, Yan, Mingyu, Xia, Shaolian, Jiang, Baofeng, Su, Renbin, Tian, Xichen
منشور في:
Tech Science Press
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3199815486
003 UK-CbPIL
022 |a 0199-8595 
022 |a 1546-0118 
022 |a 0096-0608 
022 |a 0002-2284 
022 |a 0096-0594 
024 7 |a 10.32604/ee.2024.047401  |2 doi 
035 |a 3199815486 
045 2 |b d20240101  |b d20241231 
100 1 |a Zhang, Zhi 
245 1 |a Improved Unit Commitment with Accurate Dynamic Scenarios Clustering Based on Multi-Parametric Programming and Benders Decomposition 
260 |b Tech Science Press  |c 2024 
513 |a Journal Article 
520 3 |a Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existing scenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios, which threatens the robustness of stochastic unit commitment and hinders its application. This paper provides a stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming and Benders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouples the primal problem into the master problem and two types of subproblems. In the master problem, the committed generator is determined, while the feasibility and optimality of generator output are checked in these two subproblems. Scenarios are dynamically clustered during the subproblem solution process through the multi-parametric programming with respect to the solution of the master problem. In other words, multiple scenarios are clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtained by the representative scenario is generated for the master problem. Different from the conventional stochastic unit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solution process. Such a clustering approach could accurately cluster representative scenarios that have impacts on the unit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system. Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared with the conventional clustering method, the proposed method can accurately select representative scenarios while mitigating computational burden, thus guaranteeing the robustness of unit commitment. 
653 |a Programming 
653 |a Decomposition 
653 |a Unit commitment 
653 |a Benders decomposition 
653 |a Robustness (mathematics) 
653 |a Clustering 
700 1 |a Huang, Haiyu 
700 1 |a Xiong, Wei 
700 1 |a Zhou, Yijia 
700 1 |a Yan, Mingyu 
700 1 |a Xia, Shaolian 
700 1 |a Jiang, Baofeng 
700 1 |a Su, Renbin 
700 1 |a Tian, Xichen 
773 0 |t Energy Engineering : Journal of the Association of Energy Engineers  |g vol. 121, no. 6 (2024), p. 1557 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3199815486/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3199815486/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch