Efficient Data Aggregation and Message Transmission for Information Processing Model in the CPS-WSN

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers, Materials, & Continua vol. 82, no. 2 (2025), p. 2869
Hlavní autor: Chao-Hsien Hsieh
Další autoři: Yang, Qingqing, Kong, Dehong, Xu, Fengya, Wang, Hongmei
Vydáno:
Tech Science Press
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3199833390
003 UK-CbPIL
022 |a 1546-2218 
022 |a 1546-2226 
024 7 |a 10.32604/cmc.2024.058122  |2 doi 
035 |a 3199833390 
045 2 |b d20250101  |b d20251231 
100 1 |a Chao-Hsien Hsieh 
245 1 |a Efficient Data Aggregation and Message Transmission for Information Processing Model in the CPS-WSN 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a The Cyber-Physical Systems (CPS) supported by Wireless Sensor Networks (WSN) helps factories collect data and achieve seamless communication between physical and virtual components. Sensor nodes are energy-constrained devices. Their energy consumption is typically correlated with the amount of data collection. The purpose of data aggregation is to reduce data transmission, lower energy consumption, and reduce network congestion. For large-scale WSN, data aggregation can greatly improve network efficiency. However, as many heterogeneous data is poured into a specific area at the same time, it sometimes causes data loss and then results in incompleteness and irregularity of production data. This paper proposes an information processing model that encompasses the Energy-Conserving Data Aggregation Algorithm (ECDA) and the Efficient Message Reception Algorithm (EMRA). ECDA is divided into two stages, Energy conservation based on the global cost and Data aggregation based on ant colony optimization. The EMRA comprises the Polling Message Reception Algorithm (PMRA), the Shortest Time Message Reception Algorithm (STMRA), and the Specific Condition Message Reception Algorithm (SCMRA). These algorithms are not only available for the regularity and directionality of sensor information transmission, but also satisfy the different requirements in small factory environments. To compare with the recent HPSO-ILEACH and E-PEGASIS, DCDA can effectively reduce energy consumption. Experimental results show that STMRA consumes 1.3 times the time of SCMRA. Both optimization algorithms exhibit higher time efficiency than PMRA. Furthermore, this paper also evaluates these three algorithms using AHP. 
653 |a Data management 
653 |a Data processing 
653 |a Cyber-physical systems 
653 |a Data loss 
653 |a Industrial plants 
653 |a Sensors 
653 |a Wireless sensor networks 
653 |a Algorithms 
653 |a Information processing 
653 |a Data transmission 
653 |a Messages 
653 |a Energy consumption 
653 |a Ant colony optimization 
653 |a Data collection 
653 |a Energy conservation 
653 |a Factories 
700 1 |a Yang, Qingqing 
700 1 |a Kong, Dehong 
700 1 |a Xu, Fengya 
700 1 |a Wang, Hongmei 
773 0 |t Computers, Materials, & Continua  |g vol. 82, no. 2 (2025), p. 2869 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3199833390/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3199833390/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch