Enhancing Educational Materials: Integrating Emojis and AI Models into Learning Management Systems

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Computers, Materials, & Continua vol. 83, no. 2 (2025), p. 3075
Egile nagusia: Shaya Alshaya
Argitaratua:
Tech Science Press
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3199833681
003 UK-CbPIL
022 |a 1546-2218 
022 |a 1546-2226 
024 7 |a 10.32604/cmc.2025.062360  |2 doi 
035 |a 3199833681 
045 2 |b d20250101  |b d20251231 
100 1 |a Shaya Alshaya 
245 1 |a Enhancing Educational Materials: Integrating Emojis and AI Models into Learning Management Systems 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a The integration of visual elements, such as emojis, into educational content represents a promising approach to enhancing student engagement and comprehension. However, existing efforts in emoji integration often lack systematic frameworks capable of addressing the contextual and pedagogical nuances required for effective implementation. This paper introduces a novel framework that combines Data-Driven Error-Correcting Output Codes (DECOC), Long Short-Term Memory (LSTM) networks, and Multi-Layer Deep Neural Networks (ML-DNN) to identify optimal emoji placements within computer science course materials. The originality of the proposed system lies in its ability to leverage sentiment analysis techniques and contextual embeddings to align emoji recommendations with both the emotional tone and learning objectives of course content. A meticulously annotated dataset, comprising diverse topics in computer science, was developed to train and validate the model, ensuring its applicability across a wide range of educational contexts. Comprehensive validation demonstrated the system’s superior performance, achieving an accuracy of 92.4%, precision of 90.7%, recall of 89.3%, and an F1-score of 90.0%. Comparative analysis with baseline models and related works confirms the model’s ability to outperform existing approaches in balancing accuracy, relevance, and contextual appropriateness. Beyond its technical advancements, this framework offers practical benefits for educators by providing an Artificial Intelligence-assisted (AI-assisted) tool that facilitates personalized content adaptation based on student sentiment and engagement patterns. By automating the identification of appropriate emoji placements, teachers can enhance digital course materials with minimal effort, improving the clarity of complex concepts and fostering an emotionally supportive learning environment. This paper contributes to the emerging field of AI-enhanced education by addressing critical gaps in personalized content delivery and pedagogical support. Its findings highlight the transformative potential of integrating AI-driven emoji placement systems into educational materials, offering an innovative tool for fostering student engagement and enhancing learning outcomes. The proposed framework establishes a foundation for future advancements in the visual augmentation of educational resources, emphasizing scalability and adaptability for broader applications in e-learning. 
653 |a Emotional icons 
653 |a Pedagogy 
653 |a Comprehension 
653 |a Computer science 
653 |a Multilayers 
653 |a Error correction 
653 |a Artificial neural networks 
653 |a Student participation 
653 |a Neural networks 
653 |a Machine learning 
653 |a Recall 
653 |a Learning environment 
653 |a Customization 
653 |a Artificial intelligence 
653 |a Accuracy 
653 |a Educational materials 
653 |a Short term memory 
653 |a Sentiment analysis 
653 |a Learning outcomes 
653 |a Education 
653 |a Students 
653 |a Emojis 
653 |a Models 
653 |a Comparative analysis 
653 |a Teachers 
653 |a Frame analysis 
653 |a Educational systems 
653 |a Academic achievement 
653 |a Learning 
653 |a Teaching 
653 |a Distance learning 
653 |a Internet 
653 |a Computer assisted instruction--CAI 
773 0 |t Computers, Materials, & Continua  |g vol. 83, no. 2 (2025), p. 3075 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3199833681/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3199833681/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch