Fine-Grained Dance Style Classification Using an Optimized Hybrid Convolutional Neural Network Architecture for Video Processing Over Multimedia Networks

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Intelligent Systems vol. 2025 (2025)
Autor principal: Guo, Na
Otros Autores: Yang, Ahong, Wang, Yan, Dastbaravardeh, Elaheh
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3200008484
003 UK-CbPIL
022 |a 0884-8173 
022 |a 1098-111X 
024 7 |a 10.1155/int/6434673  |2 doi 
035 |a 3200008484 
045 2 |b d20250101  |b d20251231 
084 |a 163929  |2 nlm 
100 1 |a Guo, Na  |u School of Arts and Education Jinan Preschool Education College Jinan 250307 China 
245 1 |a Fine-Grained Dance Style Classification Using an Optimized Hybrid Convolutional Neural Network Architecture for Video Processing Over Multimedia Networks 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a Dance style recognition through video analysis during university training can significantly benefit both instructors and novice dancers. Employing video analysis in training offers substantial advantages, including the potential to train future dancers using innovative technologies. Over time, intricate dance gestures can be honed, reducing the burden on instructors who would, otherwise, need to provide repetitive demonstrations. Recognizing dancers’ movements, evaluating and adjusting their gestures, and extracting cognitive functions for efficient evaluation and classification are pivotal aspects of our model. Deep learning currently stands as one of the most effective approaches for achieving these objectives, particularly with short video clips. However, limited research has focused on automated analysis of dance videos for training purposes and assisting instructors. In addition, assessing the quality and accuracy of performance video recordings presents a complex challenge, especially when judges cannot fully focus on the on-stage performance. This paper proposes an alternative to manual evaluation through a video-based approach for dance assessment. By utilizing short video clips, we conduct dance analysis employing techniques such as fine-grained dance style classification in video frames, convolutional neural networks (CNNs) with channel attention mechanisms (CAMs), and autoencoders (AEs). These methods enable accurate evaluation and data gathering, leading to precise conclusions. Furthermore, utilizing cloud space for real-time processing of video frames is essential for timely analysis of dance styles, enhancing the efficiency of information processing. Experimental results demonstrate the effectiveness of our evaluation method in terms of accuracy and F1-score calculation, with accuracy exceeding 97.24% and the F1-score reaching 97.30%. These findings corroborate the efficacy and precision of our approach in dance evaluation analysis. 
653 |a Accuracy 
653 |a Data processing 
653 |a Classification 
653 |a Frames (data processing) 
653 |a Video 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Teachers 
653 |a Effectiveness 
653 |a Clips 
653 |a Automation 
653 |a Machine learning 
653 |a Real time 
653 |a Image processing 
653 |a Distance learning 
653 |a Dance 
653 |a Colleges & universities 
700 1 |a Yang, Ahong  |u School of Music University of Jinan Jinan China 
700 1 |a Wang, Yan  |u Dance Academy Shandong University of Arts Jinan 250300 China 
700 1 |a Dastbaravardeh, Elaheh  |u Department of Control Engineering Islamic Azad University of Mashhad Mashhad 91871-47578 Iran 
773 0 |t International Journal of Intelligent Systems  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3200008484/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3200008484/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3200008484/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch