Insight Into the Separation-of-Variable Methods for the Closed-Form Solutions of Free Vibration of Rectangular Thin Plates

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Computer Modeling in Engineering & Sciences vol. 142, no. 1 (2025), p. 329
Kaituhi matua: Xing, Yufeng
Ētahi atu kaituhi: Ye Yuan, Li, Gen
I whakaputaina:
Tech Science Press
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3200121350
003 UK-CbPIL
022 |a 1526-1492 
022 |a 1526-1506 
024 7 |a 10.32604/cmes.2024.056440  |2 doi 
035 |a 3200121350 
045 2 |b d20250101  |b d20251231 
100 1 |a Xing, Yufeng 
245 1 |a Insight Into the Separation-of-Variable Methods for the Closed-Form Solutions of Free Vibration of Rectangular Thin Plates 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a The separation-of-variable (SOV) methods, such as the improved SOV method, the variational SOV method, and the extended SOV method, have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells. By taking the free vibration of rectangular thin plates as an example, this work presents the theoretical framework of the SOV methods in an instructive way, and the bisection–based solution procedures for a group of nonlinear eigenvalue equations. Besides, the explicit equations of nodal lines of the SOV methods are presented, and the relations of nodal line patterns and frequency orders are investigated. It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies, the mode shapes about repeated frequencies can also be precisely captured, and the SOV methods do not have the problem of missing roots as well. 
653 |a Eigenvalues 
653 |a Exact solutions 
653 |a Free vibration 
653 |a Thin plates 
653 |a Rectangular plates 
653 |a Cylindrical shells 
653 |a Closed form solutions 
653 |a Separation 
653 |a Accuracy 
653 |a Partial differential equations 
653 |a Coordinate transformations 
653 |a Methods 
653 |a Boundary conditions 
700 1 |a Ye Yuan 
700 1 |a Li, Gen 
773 0 |t Computer Modeling in Engineering & Sciences  |g vol. 142, no. 1 (2025), p. 329 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3200121350/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3200121350/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch