LMSA: A Lightweight Multi-Key Secure Aggregation Framework for Privacy-Preserving Healthcare AIoT

Guardado en:
Detalles Bibliográficos
Publicado en:Computer Modeling in Engineering & Sciences vol. 143, no. 1 (2025), p. 827
Autor principal: Park, Hyunwoo
Otros Autores: Lee, Jaedong
Publicado:
Tech Science Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3200122643
003 UK-CbPIL
022 |a 1526-1492 
022 |a 1526-1506 
024 7 |a 10.32604/cmes.2025.061178  |2 doi 
035 |a 3200122643 
045 2 |b d20250101  |b d20251231 
100 1 |a Park, Hyunwoo 
245 1 |a LMSA: A Lightweight Multi-Key Secure Aggregation Framework for Privacy-Preserving Healthcare AIoT 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a Integrating Artificial Intelligence of Things (AIoT) in healthcare offers transformative potential for real-time diagnostics and collaborative learning but presents critical challenges, including privacy preservation, computational efficiency, and regulatory compliance. Traditional approaches, such as differential privacy, homomorphic encryption, and secure multi-party computation, often fail to balance performance and privacy, rendering them unsuitable for resource-constrained healthcare AIoT environments. This paper introduces LMSA (Lightweight Multi-Key Secure Aggregation), a novel framework designed to address these challenges and enable efficient, secure federated learning across distributed healthcare institutions. LMSA incorporates three key innovations: (1) a lightweight multi-key management system leveraging Diffie-Hellman key exchange and SHA3-256 hashing, achieving O(n) complexity with AES (Advanced Encryption Standard)-256-level security; (2) a privacy-preserving aggregation protocol employing hardware-accelerated AES-CTR (CounTeR) encryption and modular arithmetic for secure model weight combination; and (3) a resource-optimized implementation utilizing AES-NI (New Instructions) instructions and efficient memory management for real-time operations on constrained devices. Experimental evaluations using the National Institutes of Health (NIH) Chest X-ray dataset demonstrate LMSA’s ability to train multi-label thoracic disease prediction models with Vision Transformer (ViT), ResNet-50, and MobileNet architectures across distributed healthcare institutions. Memory usage analysis confirmed minimal overhead, with ViT (327.30 MB), ResNet-50 (89.87 MB), and MobileNet (8.63 MB) maintaining stable encryption times across communication rounds. LMSA ensures robust security through hardware acceleration, enabling real-time diagnostics without compromising patient confidentiality or regulatory compliance. Future research aims to optimize LMSA for ultra-low-power devices and validate its scalability in heterogeneous, real-world environments. LMSA represents a foundational advancement for privacy-conscious healthcare AI applications, bridging the gap between privacy and performance. 
653 |a Encryption 
653 |a Real time operation 
653 |a Security 
653 |a Health care 
653 |a Hardware 
653 |a Prediction models 
653 |a Privacy 
653 |a Cryptography 
653 |a Artificial intelligence 
653 |a Machine learning 
653 |a Federated learning 
653 |a Constraints 
653 |a Distributed memory 
653 |a Memory management 
700 1 |a Lee, Jaedong 
773 0 |t Computer Modeling in Engineering & Sciences  |g vol. 143, no. 1 (2025), p. 827 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3200122643/abstract/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3200122643/fulltextPDF/embedded/Y2VX53961LHR7RE6?source=fedsrch