Improving Shallow Foundation Settlement Prediction through Intelligent Optimization Techniques

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Computer Modeling in Engineering & Sciences vol. 143, no. 1 (2025), p. 747
Päätekijä: Fattahi, Hadi
Muut tekijät: Ghaedi, Hossein, Armaghani, Danial
Julkaistu:
Tech Science Press
Aiheet:
Linkit:Citation/Abstract
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3200123532
003 UK-CbPIL
022 |a 1526-1492 
022 |a 1526-1506 
024 7 |a 10.32604/cmes.2025.062390  |2 doi 
035 |a 3200123532 
045 2 |b d20250101  |b d20251231 
100 1 |a Fattahi, Hadi 
245 1 |a Improving Shallow Foundation Settlement Prediction through Intelligent Optimization Techniques 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a In contemporary geotechnical projects, various approaches are employed for forecasting the settlement of shallow foundations (Sm). However, achieving precise modeling of foundation behavior using certain techniques (such as analytical, numerical, and regression) is challenging and sometimes unattainable. This is primarily due to the inherent nonlinearity of the model, the intricate nature of geotechnical materials, the complex interaction between soil and foundation, and the inherent uncertainty in soil parameters. Therefore, these methods often introduce assumptions and simplifications, resulting in relationships that deviate from the actual problem’s reality. In addition, many of these methods demand significant investments of time and resources but neglect to account for the uncertainty inherent in soil/rock parameters. This study explores the application of innovative intelligent techniques to predict Sm to address these shortcomings. Specifically, two optimization algorithms, namely teaching-learning-based optimization (TLBO) and harmony search (HS), are harnessed for this purpose. The modeling process involves utilizing input parameters, such as the width of the footing (B), the pressure exerted on the footing (q), the count of SPT (Standard Penetration Test) blows (N), the ratio of footing embedment (Df/B), and the footing’s geometry (L/B), during the training phase with a dataset comprising 151 data points. Then, the models’ accuracy is assessed during the testing phase using statistical metrics, including the coefficient of determination (R2), mean square error (MSE), and root mean square error (RMSE), based on a dataset of 38 data points. The findings of this investigation underscore the substantial efficacy of intelligent optimization algorithms as valuable tools for geotechnical engineers when estimating Sm. In addition, a sensitivity analysis of the input parameters in Sm estimation is conducted using @RISK software, revealing that among the various input parameters, the N exerts the most pronounced influence on Sm. 
653 |a Mean square errors 
653 |a Datasets 
653 |a Settlement analysis 
653 |a Sensitivity analysis 
653 |a Parameter sensitivity 
653 |a Modelling 
653 |a Optimization techniques 
653 |a Root-mean-square errors 
653 |a Optimization 
653 |a Algorithms 
653 |a Penetration tests 
653 |a Foundation settlement 
653 |a Machine learning 
653 |a Statistical analysis 
653 |a Optimization algorithms 
653 |a Uncertainty 
653 |a Geotechnical engineering 
653 |a Estimation 
653 |a Data points 
653 |a Footings 
700 1 |a Ghaedi, Hossein 
700 1 |a Armaghani, Danial 
773 0 |t Computer Modeling in Engineering & Sciences  |g vol. 143, no. 1 (2025), p. 747 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3200123532/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3200123532/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch