Parametric Analysis and Designing Maps for Powder Spreading in Metal Additive Manufacturing

Guardado en:
Detalles Bibliográficos
Publicado en:Computer Modeling in Engineering & Sciences vol. 142, no. 2 (2025), p. 2067
Autor principal: Wu, Yuxuan
Otros Autores: Namilae, Sirish
Publicado:
Tech Science Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3200123791
003 UK-CbPIL
022 |a 1526-1492 
022 |a 1526-1506 
024 7 |a 10.32604/cmes.2024.059091  |2 doi 
035 |a 3200123791 
045 2 |b d20250101  |b d20251231 
100 1 |a Wu, Yuxuan 
245 1 |a Parametric Analysis and Designing Maps for Powder Spreading in Metal Additive Manufacturing 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a Powder bed fusion (PBF) in metallic additive manufacturing offers the ability to produce intricate geometries, high-strength components, and reliable products. However, powder processing before energy-based binding significantly impacts the final product’s integrity. Processing maps guide efficient process design to minimize defects, but creating them through experimentation alone is challenging due to the wide range of parameters, necessitating a comprehensive computational parametric analysis. In this study, we used the discrete element method to parametrically analyze the powder processing design space in PBF of stainless steel 316L powders. Uniform lattice parameter sweeps are often used for parametric analysis, but are computationally intensive. We find that non-uniform parameter sweep based on the low discrepancy sequence (LDS) algorithm is ten times more efficient at exploring the design space while accurately capturing the relationship between powder flow dynamics and bed packing density. We introduce a multi-layer perceptron (MLP) model to interpolate parametric causalities within the LDS parameter space. With over 99% accuracy, it effectively captures these causalities while requiring fewer simulations. Finally, we generate processing design maps for machine setups and powder selections for efficient process design. We find that recoating speed has the highest impact on powder processing quality, followed by recoating layer thickness, particle size, and inter-particle friction. 
653 |a Discrete element method 
653 |a Algorithms 
653 |a Process mapping 
653 |a Powder beds 
653 |a Manufacturing 
653 |a Multilayers 
653 |a Packing density 
653 |a Austenitic stainless steels 
653 |a Parameters 
653 |a Multilayer perceptrons 
653 |a Thickness 
653 |a Additive manufacturing 
653 |a Parametric analysis 
653 |a Friction 
653 |a Machine learning 
653 |a Finite volume method 
653 |a Simulation 
653 |a Artificial intelligence 
653 |a Lasers 
653 |a Process controls 
653 |a Causality 
653 |a Stainless steel 
653 |a Particle size 
700 1 |a Namilae, Sirish 
773 0 |t Computer Modeling in Engineering & Sciences  |g vol. 142, no. 2 (2025), p. 2067 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3200123791/abstract/embedded/WAQKWGCDE3OCLOOD?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3200123791/fulltextPDF/embedded/WAQKWGCDE3OCLOOD?source=fedsrch