Electric Power Regulation for a Novel Riverine Hydrokinetic Energy Conversion System

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:ProQuest Dissertations and Theses (2025)
Kaituhi matua: Ahammed, Kawsar
I whakaputaina:
ProQuest Dissertations & Theses
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3201306118
003 UK-CbPIL
020 |a 9798314859247 
035 |a 3201306118 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Ahammed, Kawsar 
245 1 |a Electric Power Regulation for a Novel Riverine Hydrokinetic Energy Conversion System 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Transportation of diesel fuel used to produce electricity for Alaska remote communities is highly expensive. Thus, people living in those remote areas pay a high rate for electric energy compared to the national average cost. The availability of renewable energy resources may help to minimize these high expenses. As many rural Alaskans live near rivers, hydrokinetic energy could be used as a renewable source of electric power. This renewable resource, if successfully harvested, has immense potential to help power Alaska remote communities and significantly reduce electric energy costs. This project aims to investigate the implementation of an energy conversion system to harvest riverine power by utilization of a novel hydrokinetic energy harvesting system through field testing and modelling. An electrical power generator, specifically a permanent magnet synchronous generator (PMSG), was selected to be used for mechanical-to-electrical energy conversion within a low-speed range. Unregulated electric power produced by the generator was rectified and filtered to produce smooth DC power. A maximum power point tracking (MPPT) current controller was implemented in the Simulink® environment to demonstrate how to extract the maximum power available at the generator output under different water velocities and load conditions. 
653 |a Electrical engineering 
653 |a Engineering 
653 |a Energy 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3201306118/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3201306118/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch