Fast noisy long read alignment with multi-level parallelism

Salvato in:
Dettagli Bibliografici
Pubblicato in:BMC Bioinformatics vol. 26 (2025), p. 1
Autore principale: Xia, Zeyu
Altri autori: Yang, Canqun, Peng, Chenchen, Guo, Yifei, Guo, Yufei, Tang, Tao, Cui, Yingbo
Pubblicazione:
Springer Nature B.V.
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3201517842
003 UK-CbPIL
022 |a 1471-2105 
024 7 |a 10.1186/s12859-025-06129-w  |2 doi 
035 |a 3201517842 
045 2 |b d20250101  |b d20251231 
084 |a 58459  |2 nlm 
100 1 |a Xia, Zeyu 
245 1 |a Fast noisy long read alignment with multi-level parallelism 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a BackgroundThe advent of Single Molecule Real-Time (SMRT) sequencing has overcome many limitations of second-generation sequencing, such as limited read lengths, PCR amplification biases. However, longer reads increase data volume exponentially and high error rates make many existing alignment tools inapplicable. Additionally, a single CPU’s performance bottleneck restricts the effectiveness of alignment algorithms for SMRT sequencing.ResultsTo address these challenges, we introduce ParaHAT, a parallel alignment algorithm for noisy long reads. ParaHAT utilizes vector-level, thread-level, process-level, and heterogeneous parallelism. We redesign the dynamic programming matrices layouts to eliminate data dependency in the base-level alignment, enabling effective vectorization. We further enhance computational speed through heterogeneous parallel technology and implement the algorithm for multi-node computing using MPI, overcoming the computational limits of a single node.ConclusionsPerformance evaluations show that ParaHAT got a 10.03x speedup in base-level alignment, with a parallel acceleration ratio and weak scalability metric of 94.61 and 98.98% on 128 nodes, respectively. 
653 |a Background noise 
653 |a Parallel processing 
653 |a DNA sequencing 
653 |a Dynamic programming 
653 |a Alignment 
653 |a Performance evaluation 
653 |a Algorithms 
653 |a Communication 
653 |a Redesign 
653 |a Seeds 
653 |a Effectiveness 
653 |a Regions 
653 |a Genomes 
653 |a Computer applications 
653 |a Efficiency 
653 |a Economic 
700 1 |a Yang, Canqun 
700 1 |a Peng, Chenchen 
700 1 |a Guo, Yifei 
700 1 |a Guo, Yufei 
700 1 |a Tang, Tao 
700 1 |a Cui, Yingbo 
773 0 |t BMC Bioinformatics  |g vol. 26 (2025), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3201517842/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3201517842/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3201517842/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch