Towards interpretable sleep stage classification with a multi-stream fusion network

Guardado en:
Detalles Bibliográficos
Publicado en:BMC Medical Informatics and Decision Making vol. 25 (2025), p. 1
Autor principal: Chen, Jingrui
Otros Autores: Fan, Xiaomao, Ge, Ruiquan, Xiao, Jing, Wang, Ruxin, Ma, Wenjun, Li, Ye
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3201521378
003 UK-CbPIL
022 |a 1472-6947 
024 7 |a 10.1186/s12911-025-02995-9  |2 doi 
035 |a 3201521378 
045 2 |b d20250101  |b d20251231 
084 |a 58451  |2 nlm 
100 1 |a Chen, Jingrui 
245 1 |a Towards interpretable sleep stage classification with a multi-stream fusion network 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Sleep stage classification is a significant measure in assessing sleep quality and diagnosing sleep disorders. Many researchers have investigated automatic sleep stage classification methods and achieved promising results. However, these methods ignored the heterogeneous information fusion of the spatial–temporal and spectral–temporal features among multiple-channel sleep monitoring signals. In this study, we propose an interpretable multi-stream fusion network, named MSF-SleepNet, for sleep stage classification. Specifically, we employ Chebyshev graph convolution and temporal convolution to obtain the spatial–temporal features from body-topological information of sleep monitoring signals. Meanwhile, we utilize a short time Fourier transform and gated recurrent unit to learn the spectral–temporal features from sleep monitoring signals. After fusing the spatial–temporal and spectral–temporal features, we use a contrastive learning scheme to enhance the differences in feature patterns of sleep monitoring signals across various sleep stages. Finally, LIME is employed to improve the interpretability of MSF-SleepNet. Experimental results on ISRUC-S1 and ISRUC-S3 datasets show that MSF-SleepNet achieves competitive results and is superior to its state-of-the-art counterparts on most of performance metrics. 
653 |a Sleep 
653 |a Datasets 
653 |a Classification 
653 |a Convolution 
653 |a Chebyshev approximation 
653 |a Data integration 
653 |a Electromyography 
653 |a Electroencephalography 
653 |a Monitoring 
653 |a Fourier transforms 
653 |a Natural language 
653 |a Machine learning 
653 |a Eye movements 
653 |a Performance measurement 
653 |a Computer vision 
653 |a Sleep disorders 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Temporal variations 
653 |a Algorithms 
653 |a Decision trees 
700 1 |a Fan, Xiaomao 
700 1 |a Ge, Ruiquan 
700 1 |a Xiao, Jing 
700 1 |a Wang, Ruxin 
700 1 |a Ma, Wenjun 
700 1 |a Li, Ye 
773 0 |t BMC Medical Informatics and Decision Making  |g vol. 25 (2025), p. 1 
786 0 |d ProQuest  |t Healthcare Administration Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3201521378/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3201521378/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3201521378/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch