Enhancing laparoscopic surgery training: a comparative study of traditional models and automated error detection system

Guardado en:
Detalles Bibliográficos
Publicado en:BMC Medical Education vol. 25 (2025), p. 1
Autor principal: Luo, Yitian
Otros Autores: Wang, Jingjie, Zongting Yan, He, Jingjing, Fu, Liye, Wang, Shenghan, Han, Ying, Fu, Yaoyu, Wang, Xiandi, Kang, Li, Yin, Rong, Pu, Dan
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3201523502
003 UK-CbPIL
022 |a 1472-6920 
024 7 |a 10.1186/s12909-025-07242-3  |2 doi 
035 |a 3201523502 
045 2 |b d20250101  |b d20251231 
084 |a 58506  |2 nlm 
100 1 |a Luo, Yitian 
245 1 |a Enhancing laparoscopic surgery training: a comparative study of traditional models and automated error detection system 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a BackgroundAlthough beneficial for patients through its minimally invasive nature, laparoscopic surgery creates unique training challenges due to limited instrument maneuverability, absence of stereovision, and inadequate real-time feedback. Traditional training models rely on subjective instructor evaluations, which are time-consuming and lack objective error detection. This study evaluates the efficacy of an Automated Error Detection System (AEDS), designed to provide real-time feedback on mistouch error counts, in improving laparoscopic skill acquisition compared to conventional methods.MethodsForty novice participants were recruited and randomized into Group A (AEDS-enhanced training) and Group B (traditional training). Group A underwent a crossover design: 10 min of baseline training without AEDS followed by 10 min with AEDS. Group B completed 20 min of traditional training. The training program encompassed standardized laparoscopic tasks designed to simulate real surgical procedures. Performance metrics, including task completion time and the number of errors made, were recorded for each participant through AEDS. Confidence levels were assessed through self-reported questionnaires. Furthermore, statistical analysis was performed to evaluate the effectiveness of AEDS. A paired t-test was utilized to assess error reductions within the AEDS group, and Bland-Altman analysis was used to analyze the self-estimate error bias. Also, a Wilcoxon signed-rank test evaluated improvements in confidence levels attributable to the system, while a Mann-Whitney U test was conducted to compare performance metrics between the AEDS and traditional training groups.ResultsGroup A demonstrated a 24% reduction in errors post-AEDS (mean: 78.1 to 59.4, p < 0.001), outperforming Group B (mean: 67.4, p < 0.001). Participants significantly underestimated errors without AEDS (mean bias: +9.9 errors). Confidence levels in Group A increased from 2.4 to 3.6, significantly surpassing Group B’s improvement (median: 3) (p < 0.001). Real-time feedback bridged perceptual gaps, enhancing both technical precision and self-assessment accuracy.ConclusionThe integration of AEDS into laparoscopic training significantly reduces operational errors, accelerates skill acquisition, and boosts trainee confidence by providing objective feedback. These findings advocate for adopting AEDS in surgical education to standardize training outcomes, mitigate overconfidence, and improve patient safety. Future studies should explore AEDS scalability across advanced procedural modules and diverse trainee cohorts.Clinical trial numberNot applicable. 
653 |a Students 
653 |a Usability 
653 |a Training 
653 |a Questionnaires 
653 |a Laparoscopy 
653 |a Automation 
653 |a Skills 
653 |a Simulation 
653 |a Surgery 
653 |a Error correction & detection 
653 |a Experiments 
653 |a Data collection 
653 |a Computer Simulation 
653 |a Observational Learning 
653 |a Error Correction 
653 |a Learning Processes 
653 |a Modeling (Psychology) 
653 |a Time 
653 |a Required Courses 
653 |a Skill Development 
653 |a Comparative Analysis 
653 |a Outcomes of Education 
700 1 |a Wang, Jingjie 
700 1 |a Zongting Yan 
700 1 |a He, Jingjing 
700 1 |a Fu, Liye 
700 1 |a Wang, Shenghan 
700 1 |a Han, Ying 
700 1 |a Fu, Yaoyu 
700 1 |a Wang, Xiandi 
700 1 |a Kang, Li 
700 1 |a Yin, Rong 
700 1 |a Pu, Dan 
773 0 |t BMC Medical Education  |g vol. 25 (2025), p. 1 
786 0 |d ProQuest  |t Healthcare Administration Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3201523502/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3201523502/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3201523502/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch