Application of machine learning in predicting sources of water pollution in the Euphrates and Tigris rivers in Iraq

保存先:
書誌詳細
出版年:International Journal of Aquatic Biology vol. 12, no. 6 (Dec 2024), p. 581
第一著者: Rashid, Mohammed Kareem
その他の著者: Salman, Israa Ramadhan, Obaid, Abbas Luaibi, Hassan, Saif Al-Deen H, Al-musawi, Mohammed Raoof, Al-Saady, Moumal
出版事項:
Iranian Society of Ichthyology
主題:
オンライン・アクセス:Citation/Abstract
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3201565709
003 UK-CbPIL
022 |a 2383-0956 
022 |a 2322-5270 
024 7 |a 10.22034/ijab.v12i6.2421  |2 doi 
035 |a 3201565709 
045 2 |b d20241201  |b d20241231 
084 |a 283029  |2 nlm 
100 1 |a Rashid, Mohammed Kareem  |u Electronic Computing Center, University of Misan, Maysan, Iraq 
245 1 |a Application of machine learning in predicting sources of water pollution in the Euphrates and Tigris rivers in Iraq 
260 |b Iranian Society of Ichthyology  |c Dec 2024 
513 |a Journal Article 
520 3 |a New evaluation and control methods are required to address the ecological, economic, and public health concerns raised by the contamination of the rivers Tigris and Euphrates. To minimize negative effects on ecosystems, our research built and implemented a machine learning framework to track down and foresee potential water contamination hotspots. To examine the causes of pollution and its consequences on aquatic ecosystems, researchers combined data from multiple sources, such as aerial photographs, field surveys, and official government documents. Predictive models encompass significant attributes such as pesticides, mineral composition, suspended particulates, diversity of macroinvertebrates, and habitat quality. Feature selection techniques, including LASSO regression and recursive feature elimination, ensured dependable model construction. Four machine learning algorithms of MCP, K-nearest neighbors, decision tree, and multi-layer perceptron were employed for pollution source recognition and impact prediction. The models correctly identified significant pollution sources, including untreated sewage, agricultural runoff, and industrial discharges. The concentration and distribution patterns of pollutants were elucidated by clustering and regression techniques. The results indicated reduced biodiversity, habitat degradation, and toxic algal blooms, as well as identified significant pollution areas. This research shows that machine learning can transform environmental monitoring and water resource management. The study's practical findings, which integrate ecological and computational methodologies, can assist policymakers and water resource managers. 
653 |a Pesticides 
653 |a Agricultural runoff 
653 |a Environmental monitoring 
653 |a Algal blooms 
653 |a Environmental degradation 
653 |a Resource management 
653 |a Multilayer perceptrons 
653 |a Public health 
653 |a Macroinvertebrates 
653 |a Biodiversity 
653 |a Rivers 
653 |a Machine learning 
653 |a Contamination 
653 |a Particulates 
653 |a Prediction models 
653 |a Decision trees 
653 |a Eutrophication 
653 |a Sewage 
653 |a Water quality 
653 |a Water resources management 
653 |a Environmental quality 
653 |a Clustering 
653 |a Aerial surveys 
653 |a Algae 
653 |a Algorithms 
653 |a Water resources 
653 |a Pollution sources 
653 |a Pollution 
653 |a Mineral composition 
653 |a Aerial photographs 
653 |a Ecosystems 
653 |a Multilayers 
653 |a Water pollution 
653 |a Aquatic ecosystems 
653 |a Aerial photography 
653 |a Learning algorithms 
653 |a Suspended particulate matter 
653 |a Control methods 
653 |a Zoobenthos 
653 |a Habitats 
653 |a Impact prediction 
653 |a Environmental 
700 1 |a Salman, Israa Ramadhan  |u College of Pharmacy, University of Misan, Maysan, Iraq 
700 1 |a Obaid, Abbas Luaibi  |u College of Agriculture, University of Misan, Maysan, Iraq 
700 1 |a Hassan, Saif Al-Deen H  |u Department Business Administrator, College of Administration and Economics, University of Misan, Maysan, Iraq 
700 1 |a Al-musawi, Mohammed Raoof  |u SMonash University, Clayton 3168, Melbourne, Victoria, Australia 
700 1 |a Al-Saady, Moumal 
773 0 |t International Journal of Aquatic Biology  |g vol. 12, no. 6 (Dec 2024), p. 581 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3201565709/abstract/embedded/NVC8TPT9VN4WFQEG?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3201565709/fulltextPDF/embedded/NVC8TPT9VN4WFQEG?source=fedsrch