A clustering-aided multi-agent deep reinforcement learning for multi-objective parallel batch processing machines scheduling in semiconductor manufacturing

Guardado en:
Detalles Bibliográficos
Publicado en:Measurement and Control vol. 58, no. 5 (May 2025), p. 614
Autor principal: Zhang, Peng
Otros Autores: Jin, Mengyu, Wang, Ming, Zhang, Jie, He, Junjie, Zheng, Peng
Publicado:
Sage Publications Ltd.
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3201726493
003 UK-CbPIL
022 |a 0020-2940 
022 |a 2051-8730 
024 7 |a 10.1177/00202940241269643  |2 doi 
035 |a 3201726493 
045 2 |b d20250501  |b d20250531 
100 1 |a Zhang, Peng  |u Shanghai Engineering Research Center of industrial Big Data and Intelligent System, Institute of Artificial Intelligence, Donghua University, Shanghai, China 
245 1 |a A clustering-aided multi-agent deep reinforcement learning for multi-objective parallel batch processing machines scheduling in semiconductor manufacturing 
260 |b Sage Publications Ltd.  |c May 2025 
513 |a Journal Article 
520 3 |a Batch processing machines are often the bottleneck in semiconductor manufacturing and their scheduling plays a key role in production management. Pioneer researches on multi-objective batch machines scheduling mainly focus on evolutionary algorithms, failing to meet the online scheduling demand. To deal with the challenges confronted by incompatible job families, dynamic job arrivals, capacitated machines and multiple objectives, we propose a clustering-aided multi-agent deep reinforcement learning approach (CA-MADRL) for the scheduling problem. Specifically, to achieve diverse nondominated solutions, an offline multi-objective scheduling algorithm named Multi-Subpopulation fast elitist Non-Dominated Sorting Genetic Algorithm (MS-NSGA-II) is firstly developed to obtain the Pareto Fronts, and a clustering algorithm based on cosine distance is employed to analyze the distribution of Pareto frontier solution, which would be used to guide reward functions design in multi-agent deep reinforcement learning. To realize multi-objective optimization, several reinforcement learning base models are trained for different optimization directions, each of which composed of batch forming agent and batch scheduling agent. To alleviate time complexity of model training, a parameter sharing strategy is introduced between different reinforcement learning base model. By validating the proposed approach with 16 instances designed based on actual production data from a semiconductor manufacturing company, it has been demonstrated that the approach not only meets the high-frequency scheduling requirements of manufacturing systems for parallel batch processing machines but also effectively reduces the total job tardiness and machine energy consumption. 
653 |a Production management 
653 |a Scheduling 
653 |a Deep learning 
653 |a Genetic algorithms 
653 |a Clustering 
653 |a Pareto optimization 
653 |a Multiagent systems 
653 |a Batch processing 
653 |a Multiple objective analysis 
653 |a Manufacturing 
653 |a Computer aided scheduling 
653 |a Semiconductors 
653 |a Energy consumption 
653 |a Sorting algorithms 
653 |a Evolutionary algorithms 
700 1 |a Jin, Mengyu  |u Shanghai Engineering Research Center of industrial Big Data and Intelligent System, Institute of Artificial Intelligence, Donghua University, Shanghai, China 
700 1 |a Wang, Ming  |u College of Mechanical Engineering, Donghua University, Shanghai, China 
700 1 |a Zhang, Jie  |u Shanghai Engineering Research Center of industrial Big Data and Intelligent System, Institute of Artificial Intelligence, Donghua University, Shanghai, China 
700 1 |a He, Junjie  |u Shanghai Engineering Research Center of industrial Big Data and Intelligent System, Institute of Artificial Intelligence, Donghua University, Shanghai, China 
700 1 |a Zheng, Peng  |u College of Log istics Engineering, Shanghai Maritime University, Shanghai, China 
773 0 |t Measurement and Control  |g vol. 58, no. 5 (May 2025), p. 614 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3201726493/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://journals.sagepub.com/doi/10.1177/00202940241269643