Study of the antivirus patch testing problem through optimal control modeling

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 5 (May 2025), p. e0319916
Autor principal: Liu, Guofang
Otros Autores: Fu, Chunlong, Yang, Xiaofan, Yang, Luxing, Feng, Yanhua, Yang, Qin
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3201759997
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0319916  |2 doi 
035 |a 3201759997 
045 2 |b d20250501  |b d20250531 
084 |a 174835  |2 nlm 
100 1 |a Liu, Guofang 
245 1 |a Study of the antivirus patch testing problem through optimal control modeling 
260 |b Public Library of Science  |c May 2025 
513 |a Journal Article 
520 3 |a The lag of antivirus (AV) software development relative to malware development makes it necessary to constantly release AV patches. In practice, an AV patch can be deployed on an organization’s intranet only when it passes compatibility test. In this context, a subset of hosts may be assigned to perform the test. The function of the fraction of the assigned hosts with respect to time is referred to as an AV patch testing (AVPT) policy, and the problem of finding a satisfactory AVPT policy in terms of the cost benefit is referred to as the AVPT problem. This paper addresses the AVPT problem through optimal control modeling. A new mathematical model of characterizing the evolution of the intranet’s expected state is introduced by incorporating the effect of AV patch testing. On this basis, the AVPT problem is modeled as an optimal control problem (the AVPT model). By applying the Pontryagin Maximum Principle to this model, an iterative algorithm of solving the model is presented. The usability of the algorithm, including its convergence and effectiveness, is validated. Finally, the effect of a pair of controllable factors is inspected. This work initiates the study of patch testing-related issues through optimal control modeling. 
653 |a Infectious diseases 
653 |a Software 
653 |a Iterative algorithms 
653 |a Usability 
653 |a Anti-virus software 
653 |a Algorithms 
653 |a Bandwidths 
653 |a Modelling 
653 |a Malware 
653 |a Intranets 
653 |a Automation 
653 |a Optimal control 
653 |a Dynamical systems 
653 |a Pontryagin principle 
653 |a Propagation 
653 |a Computers 
653 |a Controllability 
653 |a Computer viruses 
653 |a Mathematical models 
653 |a Software development 
653 |a Ransomware 
653 |a Economic 
700 1 |a Fu, Chunlong 
700 1 |a Yang, Xiaofan 
700 1 |a Yang, Luxing 
700 1 |a Feng, Yanhua 
700 1 |a Yang, Qin 
773 0 |t PLoS One  |g vol. 20, no. 5 (May 2025), p. e0319916 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3201759997/abstract/embedded/160PP4OP4BJVV2EV?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3201759997/fulltext/embedded/160PP4OP4BJVV2EV?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3201759997/fulltextPDF/embedded/160PP4OP4BJVV2EV?source=fedsrch