Online 3D Bin Packing An Image-Based Deep Reinforcement Learning Approach

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Almanakly, Husam
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3201895509
003 UK-CbPIL
020 |a 9798314871829 
035 |a 3201895509 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Almanakly, Husam 
245 1 |a <strong>Online 3D Bin Packing</strong> <em>An Image-Based Deep Reinforcement Learning Approach</em> 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a The bin-packing problem is a strongly NP-Hard problem with extensive research. It involves the task of arranging a set of items into a finite number of bins and trying to optimize against some sort of heuristic, usually involving maximizing the number of items placed or minimizing the amount of empty space. The online case involves placing items without information on the upcoming sequence of items. It has significant applications in warehouse management, e-commerce logistics, and cloud computing. In this paper, we explore an image-based approach using deep reinforcement learning to teach a model to place geometric items efficiently in the 3D case. Image based techniques have the benefit of not requiring precise measurements of the bin state or object being placed, and can also represent non-uniform shapes easier. We leverage a Double Deep Q Learning network as our deep reinforcement learning framework to teach a model to place an item given an image of the bin state as well as the item to place. We use a reward structure defined in a manner to encourage compactness and clustering of the items, as well as discouraging overlapping / out of bounds invalid moves. The results show that we outperform the baseline heuristics and compete with state-of-the-art methods for 3D online bin packing when using small bin dimensions. 
653 |a Computer engineering 
653 |a Computer science 
653 |a Artificial intelligence 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3201895509/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3201895509/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch