A Machine Learning-Based Intrusion Detection Algorithm for Securing Bioinformatics Pipelines

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:International Conference on Cyber Warfare and Security (Mar 2025), p. 345
Үндсэн зохиолч: Osamor, Jude
Бусад зохиолчид: Yisa, Aliyu, Olanipekun, Febisola, Olowosule, Omotolani, Akerele, Samuel, Anyalechi, Onyekachi, Sadiq, Simbiat, Akerele, Iretioluwa, Palmer, Xavier, Barnett, Michaela
Хэвлэсэн:
Academic Conferences International Limited
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3202190727
003 UK-CbPIL
035 |a 3202190727 
045 2 |b d20250301  |b d20250331 
084 |a 142229  |2 nlm 
100 1 |a Osamor, Jude  |u Cyblack, Manchester, UK 
245 1 |a A Machine Learning-Based Intrusion Detection Algorithm for Securing Bioinformatics Pipelines 
260 |b Academic Conferences International Limited  |c Mar 2025 
513 |a Conference Proceedings 
520 3 |a Bioinformatics pipelines, which process vast amounts of sensitive biological data, are increasingly targeted by cyberattacks. Traditional security measures often fail to provide adequate protection due to the unique computational and network characteristics of these pipelines. This study proposes a machine learning-based Intrusion Detection System (IDS) tailored specifically for bioinformatics workflows. While the CICIDS2017 dataset serves as the primary benchmark, we augment the study with bioinformatics-specific network traffic to ensure relevance. We compare the performance of four machine learning algorithms Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), and Gradient Boosting Machine (GBM) and explore hybrid models for enhanced detection. Our findings highlight GBM's superior accuracy (98.3%) while also addressing its computational overhead and susceptibility to adversarial attacks. The study contributes novel insights by integrating real-world bioinformatics traffic data and proposing adaptive security strategies for genomic research environments. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Security 
653 |a Bioinformatics 
653 |a Support vector machines 
653 |a Pipelines 
653 |a Communications traffic 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Cybersecurity 
653 |a Data processing 
653 |a Feature selection 
653 |a Algorithms 
653 |a Workloads 
653 |a Efficiency 
653 |a Intrusion detection systems 
653 |a Susceptibility 
653 |a Genomics 
653 |a Medical informatics 
653 |a Networks 
653 |a Social networks 
653 |a Intrusion 
700 1 |a Yisa, Aliyu  |u Cyblack, Manchester, UK 
700 1 |a Olanipekun, Febisola  |u Cyblack, Manchester, UK 
700 1 |a Olowosule, Omotolani  |u Cyblack, Manchester, UK 
700 1 |a Akerele, Samuel  |u Cyblack, Manchester, UK 
700 1 |a Anyalechi, Onyekachi 
700 1 |a Sadiq, Simbiat 
700 1 |a Akerele, Iretioluwa 
700 1 |a Palmer, Xavier 
700 1 |a Barnett, Michaela 
773 0 |t International Conference on Cyber Warfare and Security  |g (Mar 2025), p. 345 
786 0 |d ProQuest  |t Political Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3202190727/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3202190727/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3202190727/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch