Residual XGBoost regression—Based individual moving range control chart for Gross Domestic Product growth monitoring

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS One vol. 20, no. 5 (May 2025), p. e0321660
Hlavní autor: Aisy, Rahida Rihhadatul
Další autoři: Zulfa, Latifatuz, Rahim, Yolanda, Ahsan, Muhammad
Vydáno:
Public Library of Science
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3202352942
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0321660  |2 doi 
035 |a 3202352942 
045 2 |b d20250501  |b d20250531 
084 |a 174835  |2 nlm 
100 1 |a Aisy, Rahida Rihhadatul 
245 1 |a Residual XGBoost regression—Based individual moving range control chart for Gross Domestic Product growth monitoring 
260 |b Public Library of Science  |c May 2025 
513 |a Journal Article 
520 3 |a Accurate and reliable Gross Domestic Product (GDP) forecasting is indispensable for informed economic policymaking and risk management. Autocorrelation, a prevalent characteristic of macroeconomic time series, poses significant challenges to traditional forecasting methodologies and statistical process control. This study introduces a novel approach to GDP forecasting and monitoring by integrating XGBoost regression, a robust machine learning algorithm, with Individual and Moving Range (I-MR) control charts. By effectively capturing complex nonlinear relationships and mitigating autocorrelation, the proposed model offers enhanced predictive accuracy compared to conventional methods. Empirical results demonstrate the model’s efficacy in phase I, aligning closely with actual GDP values. However, phase II analysis reveals discrepancies, suggesting the need for further model refinement and the potential incorporation of additional economic indicators to improve forecast precision. 
610 4 |a Group of Twenty 
651 4 |a Thailand 
651 4 |a Brunei 
651 4 |a Malaysia 
651 4 |a Indonesia 
651 4 |a Singapore 
653 |a Accuracy 
653 |a Risk management 
653 |a Datasets 
653 |a Macroeconomics 
653 |a Forecasting 
653 |a Trends 
653 |a Global economy 
653 |a Optimization techniques 
653 |a Control charts 
653 |a Statistical process control 
653 |a Economic forecasting 
653 |a Monitoring 
653 |a Machine learning 
653 |a Time series 
653 |a Autocorrelation 
653 |a Statistical analysis 
653 |a Economic growth 
653 |a Water quality 
653 |a Economics 
653 |a Process control 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Algorithms 
653 |a Gross Domestic Product--GDP 
653 |a Methods 
653 |a Regulation of financial institutions 
653 |a Economic 
700 1 |a Zulfa, Latifatuz 
700 1 |a Rahim, Yolanda 
700 1 |a Ahsan, Muhammad 
773 0 |t PLoS One  |g vol. 20, no. 5 (May 2025), p. e0321660 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3202352942/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3202352942/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3202352942/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch