Generative artificial intelligence in secondary education: Applications and effects on students’ innovation skills and digital literacy

Guardat en:
Dades bibliogràfiques
Publicat a:PLoS One vol. 20, no. 5 (May 2025), p. e0323349
Autor principal: Wu, Dang
Altres autors: Zhang, Jianyang
Publicat:
Public Library of Science
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3202353289
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0323349  |2 doi 
035 |a 3202353289 
045 2 |b d20250501  |b d20250531 
084 |a 174835  |2 nlm 
100 1 |a Wu, Dang 
245 1 |a Generative artificial intelligence in secondary education: Applications and effects on students’ innovation skills and digital literacy 
260 |b Public Library of Science  |c May 2025 
513 |a Journal Article 
520 3 |a As generative artificial intelligence (AI) rapidly transforms educational landscapes, understanding its impact on students’ core competencies has become increasingly critical for educators and policymakers. Despite growing integration of AI technologies in classrooms, there remains a significant knowledge gap regarding how these tools influence the development of essential 21st-century skills in secondary education contexts. This study addresses this gap by investigating the relationships between generative AI applications and two critical student outcomes: innovation capability and digital literacy. Through structural equation modeling analysis of data collected from 500 students across grades 7–12, the research reveals three key findings: Firstly, generative AI applications demonstrate a substantial positive effect on students’ innovation capability (β = 0.862, p < .001), enhancing critical thinking, creative problem-solving, and adaptive learning processes. Secondly, AI integration significantly improves digital literacy (β = 0.835, p < .001) by facilitating sophisticated information processing and active technological engagement. Thirdly, a strong bidirectional relationship exists between innovation capability and digital literacy (β = 0.791, p < .001), suggesting these competencies mutually reinforce each other in AI-enhanced learning environments. The model demonstrates robust explanatory power with excellent fit indices. By integrating the Technology Acceptance Model with Diffusion of Innovations theory, this study advances theoretical understanding of AI’s educational impact while providing practical guidelines for educators. The findings underscore the importance of strategic AI integration in educational curricula and suggest specific pathways for developing critical student competencies in the digital age. 
653 |a Problem solving 
653 |a Pedagogy 
653 |a Students 
653 |a Technological change 
653 |a Artificial intelligence 
653 |a Data processing 
653 |a Structural equation modeling 
653 |a Innovations 
653 |a Skills 
653 |a Generative artificial intelligence 
653 |a Educational technology 
653 |a Distance learning 
653 |a Cognition & reasoning 
653 |a Hypotheses 
653 |a Education 
653 |a Content creation 
653 |a Technology Acceptance Model 
653 |a Information processing 
653 |a Critical thinking 
653 |a Integration 
653 |a Adaptive learning 
653 |a Digital literacy 
653 |a Economic 
700 1 |a Zhang, Jianyang 
773 0 |t PLoS One  |g vol. 20, no. 5 (May 2025), p. e0323349 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3202353289/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3202353289/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3202353289/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch