Enhanced Multidimensional Nonlinear Correlation via Phase Reconstruction and Broad Learning for Distributed Fusion Detection of Weak Pulse Signals

Guardat en:
Dades bibliogràfiques
Publicat a:International Journal of Intelligent Systems vol. 2025 (2025)
Autor principal: Su, Liyun
Altres autors: Long, Xuelian
Publicat:
John Wiley & Sons, Inc.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3202632585
003 UK-CbPIL
022 |a 0884-8173 
022 |a 1098-111X 
024 7 |a 10.1155/int/8827255  |2 doi 
035 |a 3202632585 
045 2 |b d20250101  |b d20251231 
084 |a 163929  |2 nlm 
100 1 |a Su, Liyun  |u School of Sciences Chongqing University of Technology Chongqing 400054 China 
245 1 |a Enhanced Multidimensional Nonlinear Correlation via Phase Reconstruction and Broad Learning for Distributed Fusion Detection of Weak Pulse Signals 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a Due to the intricate chaotic environments encountered in distributed sensor applications, such as sea monitoring, machinery fault diagnosis, and EEG weak signal detection, neural networks often face insufficient data to effectively carry out detection tasks. In contrast to traditional machine learning models, a statistical approach employing multidimensional nonlinear correlation (MNC) exhibits an unparalleled signal pattern prediction capability and possesses a streamlined yet robust framework for signal processing. However, the direct application of MNC to weak pulse signal detection remains constrained. To surmount these challenges and achieve high-precision signal detection, we explore a novel MNC approach, integrating phase reconstruction and manifold broad learning, specifically tailored for distributed sensor fusion detection amidst chaotic noise. Initially, the distributed observational data undergoes phase space reconstruction, transforming it into fixed-size arrays. These reconstructed tuples are then processed through the high-dimensional sequence of manifold broad learning, serving as inputs for the nonlinear correlation module to extract spatiotemporal features. Subsequently, a MNC system augmented with a QRS detector layer is devised to predict and classify the presence of a weak pulse signal. This integrated MNC approach, combining phase reconstruction and broad learning, operates within an enhanced feature space of the source domain, realizing detection fusion across distributed sensors through a majority voting principle. Simulation studies and experiments conducted on sea clutter datasets demonstrate the efficacy and robustness of the proposed MNC method, leveraging phase reconstruction and manifold broad learning strategies, for distributed sensor weak pulse signal fusion detection within chaotic backgrounds. 
653 |a Machine learning 
653 |a Fault diagnosis 
653 |a Signal processing 
653 |a Neural networks 
653 |a Signal detection 
653 |a Correlation 
653 |a Sensors 
653 |a Distributed sensor systems 
653 |a Classification 
653 |a Methods 
653 |a Clutter 
653 |a Algorithms 
653 |a Reconstruction 
653 |a Multisensor fusion 
653 |a Parameter estimation 
653 |a Statistical analysis 
653 |a Simulation 
700 1 |a Long, Xuelian  |u School of Sciences Chongqing University of Technology Chongqing 400054 China 
773 0 |t International Journal of Intelligent Systems  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3202632585/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3202632585/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3202632585/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch