Data-Driven Approach for Passenger Assignment in Urban Rail Transit Networks: Insights From Passenger Route Choices and Itinerary Choices

Guardado en:
Bibliografiske detaljer
Udgivet i:Journal of Advanced Transportation vol. 2025 (2025)
Hovedforfatter: Wen, Di
Andre forfattere: Lv, Hongxia, Yu, Hao
Udgivet:
John Wiley & Sons, Inc.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3202632617
003 UK-CbPIL
022 |a 0197-6729 
022 |a 2042-3195 
022 |a 0018-1501 
024 7 |a 10.1155/atr/6620828  |2 doi 
035 |a 3202632617 
045 2 |b d20250101  |b d20251231 
084 |a 164028  |2 nlm 
100 1 |a Wen, Di  |u School of Transportation and Logistics Southwest Jiaotong University Chengdu 610031 China 
245 1 |a Data-Driven Approach for Passenger Assignment in Urban Rail Transit Networks: Insights From Passenger Route Choices and Itinerary Choices 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a Congestion in urban rail transit (URT) systems often results in passengers being left behind on platforms due to trains’ reaching capacity. Distinguishing between the travel choice behaviors of passengers who board the first arriving train (Type I passengers) and those who are left behind (Type II passengers) in passenger assignment is essential for effective URT passenger management. This paper proposes a data-driven passenger-to-train assignment model (DPTAM) that leverages automated fare collection (AFC) data and automated vehicle location (AVL) data to differentiate between the travel choice behaviors of the two types of passengers. The model comprises two modules based on passenger travel choice behavior: the passenger route choice model (PRCM) and the passenger itinerary choice model (PICM). The PRCM employs a granular ball–based density peaks clustering (GB-DP) algorithm to estimate passengers’ route choices based on historical data, enhancing precision and efficiency in passenger classification and route matching. The PICM incorporates tailored itinerary selection strategies that consider train capacity constraints and schedules, enabling accurate inference of passenger itineraries and localization of their spatiotemporal states. The model also estimates train loads and left-behind probabilities to identify congested periods and sections. The effectiveness of DPTAM is validated through synthetic data, demonstrating superior assignment accuracy compared to benchmarks. Additionally, real-world data from Chengdu Metro reveal the impact of congestion on travel behavior and effectively identify congested periods and high-demand stations and sections, highlighting its potential to enhance URT system efficiency and passenger management. 
653 |a Behavior 
653 |a Benchmarks 
653 |a Congestion 
653 |a Route choice 
653 |a Transportation models 
653 |a Clustering 
653 |a Decision making 
653 |a Passengers 
653 |a Automatic vehicle location 
653 |a Effectiveness 
653 |a Data processing 
653 |a Algorithms 
653 |a Localization 
653 |a Automation 
653 |a Route selection 
653 |a Urban rail 
653 |a Efficiency 
653 |a Synthetic data 
653 |a Social 
653 |a Economic 
700 1 |a Lv, Hongxia  |u School of Transportation and Logistics Southwest Jiaotong University Chengdu 610031 China 
700 1 |a Yu, Hao  |u Department of Industrial Engineering UiT The Arctic University of Norway Narvik 8514 Norway 
773 0 |t Journal of Advanced Transportation  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3202632617/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3202632617/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3202632617/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch