An Evaluation of Variational Autoencoder in Credit Card Anomaly Detection

Guardado en:
Detalles Bibliográficos
Publicado en:Big Data Mining and Analytics vol. 7, no. 3 (Sep 2024), p. 718
Autor principal: Alshameri, Faleh
Otros Autores: Xia, Ran
Publicado:
Tsinghua University Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3202838652
003 UK-CbPIL
022 |a 2096-0654 
024 7 |a 10.26599/BDMA.2023.9020035  |2 doi 
035 |a 3202838652 
045 2 |b d20240901  |b d20240930 
100 1 |a Alshameri, Faleh 
245 1 |a An Evaluation of Variational Autoencoder in Credit Card Anomaly Detection 
260 |b Tsinghua University Press  |c Sep 2024 
513 |a Journal Article 
520 3 |a Anomaly detection is one of the many challenging areas in cybersecurity. The anomaly can occur in many forms, such as fraudulent credit card transactions, network intrusions, and anomalous imageries or documents. One of the most common challenges in anomaly detection is the obscurity of the normal state and the lack of anomalous samples. Traditionally, this problem is tackled by using resampling techniques or choosing models that approximate the distribution of the normal states. Variational AutoEncoder (VAE) has been studied in anomaly detections despite being more suitable in generative tasks. This study aims to explore the usage of VAE in credit card anomaly detection and evaluate latent space sampling techniques. In this study, we evaluate the usage of the convolutional network-based VAE model on a credit card transaction dataset. We train two VAE models, one with a large number of normal data and one with a small number of anomalous data. We compare the performance of both VAE models and evaluate the latent space of both VAE models by rescaling them with reconstruction error vectors. We also compare the effectiveness of the VAE model with other anomaly detection models when they are trained on imbalanced dataset. 
653 |a Datasets 
653 |a Anomalies 
653 |a Rescaling 
653 |a Resampling 
653 |a Sampling methods 
653 |a Credit cards 
653 |a Cybersecurity 
653 |a Random variables 
653 |a Fraud prevention 
653 |a Neural networks 
653 |a Electrocardiography 
653 |a Approximation 
653 |a Data analysis 
653 |a Literature reviews 
653 |a Time series 
653 |a Performance evaluation 
700 1 |a Xia, Ran 
773 0 |t Big Data Mining and Analytics  |g vol. 7, no. 3 (Sep 2024), p. 718 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3202838652/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3202838652/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch