Important Things to Know Before Developing Artificial Intelligence-Based Drone Learning Systems: From the Experience of Educational Practice

Gardado en:
Detalles Bibliográficos
Publicado en:International Journal of Online Pedagogy and Course Design vol. 15, no. 1 (2025), p. 1-15
Autor Principal: Huang, Ted Yuan-Yen
Outros autores: Liu, Eric Zhi-Feng, Sang, Harry Hung-Yu
Publicado:
IGI Global
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3202868374
003 UK-CbPIL
022 |a 2155-6873 
022 |a 2155-6881 
024 7 |a 10.4018/IJOPCD.376343  |2 doi 
035 |a 3202868374 
045 2 |b d20250101  |b d20251231 
084 |a 204833  |2 nlm 
100 1 |a Huang, Ted Yuan-Yen  |u Office of Sustainable Development and University Social Responsibility, National Central University, Taiwan 
245 1 |a Important Things to Know Before Developing Artificial Intelligence-Based Drone Learning Systems: From the Experience of Educational Practice 
260 |b IGI Global  |c 2025 
513 |a Journal Article 
520 3 |a This study explored drone-based learning in educational contexts using a mixed-method design to identify key learning attributes. After completing researcher-developed drone tasks, 73 learners demonstrated a significantly improved understanding of drone concepts and proficiency in Blockly coding. However, learners perceived self-efficacy as significantly lower than other self-regulated strategies in drone activities. Task-based drone activities, facilitated by group settings, encouraged learners to develop metacognition through collective scaffolding methods, such as peer discussions and team testing. The identified learning attributes provide valuable insights for educators in designing assessments for collaborative drone problem-solving. Additionally, the interplay among effort regulation, problem-solving, and cooperativity observed in this study offers essential references for the future development of distributed expertise systems. 
653 |a Problem solving 
653 |a Pedagogy 
653 |a Predictive analytics 
653 |a Collaboration 
653 |a Curricula 
653 |a Scaffolding 
653 |a Unmanned aerial vehicles 
653 |a Core competencies 
653 |a Cognitive ability 
653 |a Cognition & reasoning 
653 |a Artificial intelligence 
653 |a Cooperation 
653 |a Education 
653 |a Learning analytics 
653 |a Drones 
653 |a Independent study 
653 |a Adaptive learning 
653 |a Guidelines 
653 |a Educational Practices 
653 |a Literature Reviews 
653 |a Competence 
653 |a Educational Resources 
653 |a Influence of Technology 
653 |a Group Instruction 
653 |a Learning Processes 
653 |a International Assessment 
653 |a Cooperative Learning 
653 |a Interpersonal Competence 
653 |a At Risk Students 
653 |a Agricultural Skills 
653 |a Communities of Practice 
653 |a Evaluative Thinking 
653 |a Educational Assessment 
653 |a Course Content 
653 |a Lifelong Learning 
653 |a Learner Engagement 
653 |a Learning Modules 
653 |a Educational Trends 
653 |a Algorithms 
700 1 |a Liu, Eric Zhi-Feng  |u Graduate institute of Learning and Instruction, National Central University, Taiwan 
700 1 |a Sang, Harry Hung-Yu  |u Graduate Institute of Learning and Instruction, National Central University, Taiwan 
773 0 |t International Journal of Online Pedagogy and Course Design  |g vol. 15, no. 1 (2025), p. 1-15 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3202868374/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3202868374/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch