A BERT-ResNet Cross-Attention Fusion Network and Modality Utilization Assessment for Multimodal Sentiment Classification

Збережено в:
Бібліографічні деталі
Опубліковано в::ProQuest Dissertations and Theses (2025)
Автор: Gold, Ronen G.
Опубліковано:
ProQuest Dissertations & Theses
Предмети:
Онлайн доступ:Citation/Abstract
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3203040236
003 UK-CbPIL
020 |a 9798314880944 
035 |a 3203040236 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Gold, Ronen G. 
245 1 |a A BERT-ResNet Cross-Attention Fusion Network and Modality Utilization Assessment for Multimodal Sentiment Classification 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a This study explores the growing field of Multimodal Sentiment Analysis (MSA), focusing on understanding how advanced fusion techniques can improve sentiment prediction in social media contexts. As platforms like X and TikTok continue to expand and facilitate sharing sentiment through digital media, there is an increasing need for neural network architectures that can accurately interpret sentiment across modalities. We implement a model using BERT for textual features and ResNet for visual features. A cross-attention fusion module aligns the modalities for joint representation. We conduct experiments on the MVSA-Single and MVSA-Multiple datasets, which contain over 5,000 and 17,000 labeled text-image pairs. Our research explores the interactions between modalities and proposes a sentiment classifier that builds upon and outperforms current baselines while quantifying the contribution of each modality through an intramodality utilization analysis. 
653 |a Artificial intelligence 
653 |a Computer engineering 
653 |a Electrical engineering 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203040236/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203040236/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch