Dynamic Inversion Method for Concrete Gravity Dam on Soft Rock Foundation

保存先:
書誌詳細
出版年:Applied Sciences vol. 15, no. 9 (2025), p. 4750
第一著者: Yin Guanglin
その他の著者: Lin Chaoning, Sheng Taozhen, Xue Wenbo, Li Tongchun, Chen Siyu
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3203187404
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15094750  |2 doi 
035 |a 3203187404 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Yin Guanglin  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China; guanglin-yin@sac-china.com (G.Y.); 241302020021@hhu.edu.cn (W.X.); ltchhu@163.com (T.L.) 
245 1 |a Dynamic Inversion Method for Concrete Gravity Dam on Soft Rock Foundation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study provides a novel approach for assessing the long-term safety of the concrete gravity dam on a soft rock foundation. The proposed dynamic inversion method, based on an improved particle swarm optimization algorithm, enables accurate identification of time-dependent parameter deterioration in dam foundations. The proposed method provides practical solutions for real-time dam health monitoring, stability assessment, and maintenance optimization, enabling more reliable safety evaluations and informed engineering decisions. This study presents a dynamic inversion method for the concrete gravity dam on a soft rock foundation, aiming to accurately characterize the time-dependent trend of the dam’s mechanical properties. Conventional static inversion methods often overlook temporal variations in material behavior, particularly the long-term weakening of soft rock foundations under environmental influences. To address this limitation, an improved particle swarm optimization (PSO) algorithm is developed for dynamic parameter inversion, combining real-time monitoring data with finite element modeling to evaluate the time-varying elastic modulus of the foundation. The results reveal an exponential decay in the foundation’s elastic modulus (from 4.67 GPa to approximately 3.83 GPa), while the dam body maintains a stable modulus of 20.74 GPa. Comparative analyses demonstrate that the dynamic inversion approach, which accounts for time-dependent parameter degradation, significantly improves the displacement prediction accuracy of the dam. The results highlight the critical importance of incorporating temporal mechanical property variations in inversion analyses to ensure reliable structural assessments and enhance long-term dam safety management. 
653 |a Mechanical properties 
653 |a Behavior 
653 |a Accuracy 
653 |a Thermal cycling 
653 |a Deep learning 
653 |a Gravity 
653 |a Artificial intelligence 
653 |a Concrete 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Methods 
653 |a Deformation 
653 |a Hydraulics 
653 |a Hydroelectric power 
700 1 |a Lin Chaoning  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China; guanglin-yin@sac-china.com (G.Y.); 241302020021@hhu.edu.cn (W.X.); ltchhu@163.com (T.L.) 
700 1 |a Sheng Taozhen  |u Center for Big Data and Smart Water, Nanjing Hydraulic Research Institute, Nanjing 210029, China; hhustz@126.com 
700 1 |a Xue Wenbo  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China; guanglin-yin@sac-china.com (G.Y.); 241302020021@hhu.edu.cn (W.X.); ltchhu@163.com (T.L.) 
700 1 |a Li Tongchun  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China; guanglin-yin@sac-china.com (G.Y.); 241302020021@hhu.edu.cn (W.X.); ltchhu@163.com (T.L.) 
700 1 |a Chen Siyu  |u Dam Safety Management Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China 
773 0 |t Applied Sciences  |g vol. 15, no. 9 (2025), p. 4750 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203187404/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3203187404/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203187404/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch