A super resolution generative adversarial networks and partition-based adaptive filtering technique for detect and remove flickers in digital color images

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:PLoS One vol. 20, no. 5 (May 2025), p. e0317758
Tác giả chính: Thangavel Shanmugaraja
Tác giả khác: Karthikeyan, Natesapillai, Subburathinam Karthik, Balamurugan Bharathi
Được phát hành:
Public Library of Science
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3203189774
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0317758  |2 doi 
035 |a 3203189774 
045 2 |b d20250501  |b d20250531 
084 |a 174835  |2 nlm 
100 1 |a Thangavel Shanmugaraja 
245 1 |a A super resolution generative adversarial networks and partition-based adaptive filtering technique for detect and remove flickers in digital color images 
260 |b Public Library of Science  |c May 2025 
513 |a Journal Article 
520 3 |a Eliminating flickering from digital images captured by cameras equipped with a rolling shutter is of paramount importance in computer vision applications. The ripple effect observed in an individual image is a consequence of the non-synchronized exposure of rolling shutters utilized in CMOS sensor-based cameras. To date, there have been only a limited number of studies focusing on the mitigation of flickering in single images. Furthermore, it is more feasible to eliminate these flickers with prior knowledge, such as camera specifications or matching images. To solve these problems, we present an unsupervised framework Super-Resolution Generative Adversarial Networks and Partition-Based Adaptive Filtering Technique (SRGAN-PBAFT) trained on unpaired images from end to end Deflickering of a single image. Flicker artifacts, which are commonly caused by dynamic lighting circumstances and sensor noise, can severely reduce an image’s visual quality and authenticity. To enhance image resolution SRGAN is used, while Partition based Adaptive Filtering technique detects and mitigates flicker distortions successfully. Combining the strengths of deep learning and adaptive filtering results in a potent approach for restoring image integrity. Experimental results shows that the Proposed SRGAN-PBAFT method is effective, with major improvements in visual quality and flicker aberration reduction compared to existing methods. 
653 |a Digital imaging 
653 |a Accuracy 
653 |a Deep learning 
653 |a Image resolution 
653 |a Hypothesis testing 
653 |a Noise reduction 
653 |a Color imagery 
653 |a Cameras 
653 |a Generative adversarial networks 
653 |a Design 
653 |a Image restoration 
653 |a Image processing 
653 |a Shutters 
653 |a Computer vision 
653 |a Methods 
653 |a Literature reviews 
653 |a Algorithms 
653 |a Image quality 
653 |a Flicker 
653 |a Adaptive filters 
653 |a Badminton 
653 |a Environmental 
700 1 |a Karthikeyan, Natesapillai 
700 1 |a Subburathinam Karthik 
700 1 |a Balamurugan Bharathi 
773 0 |t PLoS One  |g vol. 20, no. 5 (May 2025), p. e0317758 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203189774/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3203189774/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203189774/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch