Enhanced Financial Fraud Detection Using an Adaptive Voted Perceptron Model with Optimized Learning and Error Reduction

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Electronics vol. 14, no. 9 (2025), p. 1875
Yazar: Binsawad Muhammad
Baskı/Yayın Bilgisi:
MDPI AG
Konular:
Online Erişim:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3203193024
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14091875  |2 doi 
035 |a 3203193024 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Binsawad Muhammad 
245 1 |a Enhanced Financial Fraud Detection Using an Adaptive Voted Perceptron Model with Optimized Learning and Error Reduction 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Financial fraud detection is an important field in financial technology, and strong and effective machine learning (ML) models are needed to detect fraudulent transactions with high accuracy and reliability. Conventional fraud detection models, like probabilistic, instance-based, and tree-based models, tend to have high error rates, class imbalance problems, and poor adaptability to changing fraud patterns. These issues call for sophisticated methods that improve predictive accuracy while being computationally efficient. To overcome these limitations, this research introduces the Voted Perceptron (VP) model, which utilizes an iterative learning process to dynamically adapt decision boundaries based on misclassified examples. In contrast to traditional models with static decision rules, the VP model constantly updates its weight parameters, thus providing better fraud detection abilities. The evaluation compares VP with state-of-the-art machine learning models, such as Average One Dependency Estimator (A1DE), K-nearest Neighbor (KNN), Naïve Bayes (NB), Random Tree (RT), and Functional Tree (FT), by using important performance metrics, like Mean Absolute Error (MAE), Root Mean Square Error (RMSE), True Positive Rate (TPR), recall, and accuracy. Experimental results show that VP outperforms its rivals significantly, yielding better fraud detection performance with low error rates and high recall. Furthermore, an ablation study confirms the influence of essential VP model elements on general classification performance. These results demonstrate VP to be an extremely effective model for detecting financial fraud, with enhanced flexibility towards evolving fraud patterns, and confirm the necessity for intelligent fraud detection mechanisms within financial organizations. 
653 |a Recall 
653 |a Accuracy 
653 |a Machine learning 
653 |a Performance measurement 
653 |a Adaptability 
653 |a Root-mean-square errors 
653 |a Credit card fraud 
653 |a Fraud prevention 
653 |a Decision making 
653 |a Ablation 
653 |a Support vector machines 
653 |a Error reduction 
653 |a Decision trees 
653 |a Credit card processing 
653 |a Distance learning 
653 |a Error detection 
653 |a Financial institutions 
653 |a Business metrics 
773 0 |t Electronics  |g vol. 14, no. 9 (2025), p. 1875 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203193024/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3203193024/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203193024/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch