Evaluating Fairness Strategies in Educational Data Mining: A Comparative Study of Bias Mitigation Techniques

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 9 (2025), p. 1856
Autor principal: Raftopoulos, George
Otros Autores: Davrazos Gregory, Kotsiantis Sotiris
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3203194276
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14091856  |2 doi 
035 |a 3203194276 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Raftopoulos, George 
245 1 |a Evaluating Fairness Strategies in Educational Data Mining: A Comparative Study of Bias Mitigation Techniques 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Ensuring fairness in machine learning models applied to educational data is crucial for mitigating biases that can reinforce systemic inequities. This paper compares various fairness-enhancing algorithms across preprocessing, in-processing, and post-processing stages. Preprocessing methods such as Reweighting, Learning Fair Representations, and Disparate Impact Remover aim to adjust training data to reduce bias before model learning. In-processing techniques, including Adversarial Debiasing and Prejudice Remover, intervene during model training to directly minimize discrimination. Post-processing approaches, such as Equalized Odds Post-Processing, Calibrated Equalized Odds Post-Processing, and Reject Option Classification, adjust model predictions to improve fairness without altering the underlying model. We evaluate these methods on educational datasets, examining their effectiveness in reducing disparate impact while maintaining predictive performance. Our findings highlight tradeoffs between fairness and accuracy, as well as the suitability of different techniques for various educational applications. 
653 |a Comparative studies 
653 |a Algorithms 
653 |a Socioeconomic factors 
653 |a Students 
653 |a Preprocessing 
653 |a Data mining 
653 |a Bias 
653 |a Datasets 
653 |a Machine learning 
653 |a Education 
700 1 |a Davrazos Gregory 
700 1 |a Kotsiantis Sotiris 
773 0 |t Electronics  |g vol. 14, no. 9 (2025), p. 1856 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203194276/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3203194276/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203194276/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch