Joint Optimization of Dynamic Topology and AAR for UAV-ARIS Under Hardware Damage Suppression

Na minha lista:
Detalhes bibliográficos
Publicado no:Electronics vol. 14, no. 9 (2025), p. 1840
Autor principal: Peng, Yi
Outros Autores: Li, Haolin, Yang, Qingqing, Wang, Jianming, Li, Hui, Meng Bin
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3203194309
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14091840  |2 doi 
035 |a 3203194309 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Peng, Yi  |u School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China; pengyi@kust.edu.cn (Y.P.); lihaolin2000@outlook.com (H.L.); 20220079@kust.edu.cn (J.W.); 20050071@kust.edu.cn (H.L.) 
245 1 |a Joint Optimization of Dynamic Topology and AAR for UAV-ARIS Under Hardware Damage Suppression 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In existing UAV communication systems incorporating active reconfigurable intelligent surfaces (ARIS), hardware impairments (HIs) in transceivers and thermal noise from active units are frequently overlooked. This oversight leads to signal distortion at user terminals and excessive system power consumption. To address these challenges, this study proposes a solution to enhance signal transmission quality by jointly optimizing the dynamic topology of an ARIS and the average achievable rate (AAR) for users. Firstly, to mitigate inter-element interference in the ARIS, a hybrid genetic algorithm (HGA) is proposed. This algorithm integrates the global search capability of genetic algorithms with the local optimization efficiency of the tabu search algorithm (TSA) to iteratively derive the optimal dynamic topology matrix for the ARIS. Secondly, to maximize the AAR by increasing received signal power, fractional programming with quadratic transformation is combined with semidefinite relaxation and successive convex approximation to tackle the highly coupled multi-variable non-convex fractional programming problem. This approach transforms subproblems into single-variable convex optimizations. Finally, an alternating iterative method is employed to solve the convex subproblems, yielding a suboptimal solution. The simulation results demonstrate that the proposed UAV-ARIS dynamic topology optimization scheme improves the system AAR by 27–130% and energy efficiency by 19–32% compared with conventional schemes, while ensuring flexible deployment and high energy efficiency. 
653 |a Signal transmission 
653 |a Transformations (mathematics) 
653 |a Propagation 
653 |a Random variables 
653 |a Genetic algorithms 
653 |a Hardware 
653 |a Iterative methods 
653 |a Optimization techniques 
653 |a Signal quality 
653 |a Mathematical programming 
653 |a Thermal noise 
653 |a Tabu search 
653 |a Communications networks 
653 |a Communications systems 
653 |a Search algorithms 
653 |a Energy efficiency 
653 |a Local optimization 
653 |a Signal distortion 
653 |a Cost control 
653 |a Topology optimization 
653 |a Data transmission 
653 |a Energy consumption 
653 |a Reconfigurable intelligent surfaces 
700 1 |a Li, Haolin  |u School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China; pengyi@kust.edu.cn (Y.P.); lihaolin2000@outlook.com (H.L.); 20220079@kust.edu.cn (J.W.); 20050071@kust.edu.cn (H.L.) 
700 1 |a Yang, Qingqing  |u School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China; pengyi@kust.edu.cn (Y.P.); lihaolin2000@outlook.com (H.L.); 20220079@kust.edu.cn (J.W.); 20050071@kust.edu.cn (H.L.) 
700 1 |a Wang, Jianming  |u School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China; pengyi@kust.edu.cn (Y.P.); lihaolin2000@outlook.com (H.L.); 20220079@kust.edu.cn (J.W.); 20050071@kust.edu.cn (H.L.) 
700 1 |a Li, Hui  |u School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China; pengyi@kust.edu.cn (Y.P.); lihaolin2000@outlook.com (H.L.); 20220079@kust.edu.cn (J.W.); 20050071@kust.edu.cn (H.L.) 
700 1 |a Meng Bin  |u Faculty of Materials Science & Engineering, Kunming University of Science & Technology, Kunming 650093, China; mengbin@kust.edu.cn 
773 0 |t Electronics  |g vol. 14, no. 9 (2025), p. 1840 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203194309/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3203194309/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203194309/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch