Population-Based Redundancy Control in Genetic Algorithms: Enhancing Max-Cut Optimization

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 9 (2025), p. 1409
Autor principal: Yong-Hyuk, Kim
Otros Autores: Geem Zong Woo, Yoon Yourim
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3203208641
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13091409  |2 doi 
035 |a 3203208641 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Yong-Hyuk, Kim  |u School of Software, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; yhdfly@kw.ac.kr 
245 1 |a Population-Based Redundancy Control in Genetic Algorithms: Enhancing Max-Cut Optimization 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The max-cut problem is a well-known topic in combinatorial optimization, with a wide range of practical applications. Given its NP-hard nature, heuristic approaches—such as genetic algorithms, tabu search, and harmony search—have been extensively employed. Recent research has demonstrated that harmony search can outperform genetic algorithms by effectively avoiding redundant searches, a strategy similar to tabu search. In this study, we propose a modified genetic algorithm that integrates tabu search to enhance solution quality. By preventing repeated exploration of previously visited solutions, the proposed method significantly improves the efficiency of traditional genetic algorithms and achieves performance levels comparable to harmony search. The experimental results confirm that the proposed algorithm outperforms standard genetic algorithms on the max-cut problem. This work demonstrates the effectiveness of combining tabu search with genetic algorithms and offers valuable insights into the enhancement of heuristic optimization techniques. The novelty of our approach lies in integrating solution-level tabu constraints directly into the genetic algorithm’s population dynamics, enabling redundancy prevention without additional memory overhead, a strategy not previously explored in the proposed hybrids. 
653 |a Machine learning 
653 |a Semidefinite programming 
653 |a Genetic algorithms 
653 |a Graphs 
653 |a Trends 
653 |a Combinatorial analysis 
653 |a Optimization techniques 
653 |a Tabu search 
653 |a Neural networks 
653 |a Optimization 
653 |a Heuristic 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Redundancy 
700 1 |a Geem Zong Woo  |u Department of Smart City, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea; geem@gachon.ac.kr 
700 1 |a Yoon Yourim  |u Department of Computer Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea 
773 0 |t Mathematics  |g vol. 13, no. 9 (2025), p. 1409 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203208641/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3203208641/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203208641/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch