Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 9 (2025), p. 1439
Autor principal: Hu Keyong
Otros Autores: Yang, Qingqing, Lu, Lei, Zhang, Yu, Sun Shuifa, Wang, Ben
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3203211403
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13091439  |2 doi 
035 |a 3203211403 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Hu Keyong  |u School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China; 2024111011029@stu.hznu.edu.cn (Q.Y.); 2024112011060@stu.hznu.edu.cn (L.L.); watersun@hznu.edu.cn (S.S.) 
245 1 |a Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To effectively account for the impact of fluctuations in the power generation efficiency of renewable energy sources such as photovoltaics (PVs) and wind turbines (WTs), as well as the uncertainties in load demand within an integrated energy system (IES), this article develops an IES model incorporating power generation units such as PV, WT, microturbines (MTs), Electrolyzer (EL), and Hydrogen Fuel Cell (HFC), along with energy storage components including batteries and heating storage systems. Furthermore, a demand response (DR) mechanism is introduced to dynamically regulate the energy supply–demand balance. In modeling uncertainties, this article utilizes historical data on PV, WT, and loads, combined with the adjustability of decision variables, to generate a large set of initial scenarios through the Monte Carlo (MC) sampling algorithm. These scenarios are subsequently reduced using a combination of the K-means clustering algorithm and the Simultaneous Backward Reduction (SBR) technique to obtain representative scenarios. To further manage uncertainties, a distributionally robust optimization (DRO) approach is introduced. This method uses 1-norm and ∞-norm constraints to define an ambiguity set of probability distributions, thereby restricting the fluctuation range of probability distributions, mitigating the impact of deviations on optimization results, and achieving a balance between robustness and economic efficiency in the optimization process. Finally, the model is solved using the column and constraint generation algorithm, and its robustness and effectiveness are validated through case studies. The MC sampling method adopted in this article, compared to Latin hypercube sampling followed by clustering-based scenario reduction, achieves a maximum reduction of approximately 17.81% in total system cost. Additionally, the results confirm that as the number of generated scenarios increases, the optimized cost decreases, with a maximum reduction of 1.14%. Furthermore, a comprehensive cost analysis of different uncertainties modeling approaches is conducted, demonstrating that the optimization results lie between those obtained from stochastic optimization (SO) and robust optimization (RO), effectively balancing conservatism and economic efficiency. 
653 |a Energy management 
653 |a Electrical loads 
653 |a Modelling 
653 |a Optimization 
653 |a Hypercubes 
653 |a Energy storage 
653 |a Energy resources 
653 |a Uncertainty 
653 |a Probability distribution 
653 |a Robustness 
653 |a Fuel cells 
653 |a Photovoltaic cells 
653 |a Hydrofluorocarbons 
653 |a Electric power generation 
653 |a Scheduling 
653 |a Cluster analysis 
653 |a Cost analysis 
653 |a Wind power 
653 |a Electricity 
653 |a Storage systems 
653 |a Energy industry 
653 |a Costs 
653 |a Sampling methods 
653 |a Clustering 
653 |a Carbon 
653 |a Integrated energy systems 
653 |a Renewable energy sources 
653 |a Renewable resources 
653 |a Hydrogen fuels 
653 |a Algorithms 
653 |a Probability 
653 |a Integrated approach 
653 |a Linear programming 
653 |a Wind turbines 
653 |a Electric power demand 
653 |a Methods 
653 |a Alternative energy sources 
653 |a Constraints 
653 |a Vector quantization 
653 |a Latin hypercube sampling 
700 1 |a Yang, Qingqing  |u School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China; 2024111011029@stu.hznu.edu.cn (Q.Y.); 2024112011060@stu.hznu.edu.cn (L.L.); watersun@hznu.edu.cn (S.S.) 
700 1 |a Lu, Lei  |u School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China; 2024111011029@stu.hznu.edu.cn (Q.Y.); 2024112011060@stu.hznu.edu.cn (L.L.); watersun@hznu.edu.cn (S.S.) 
700 1 |a Zhang, Yu  |u School of Engineering, Hangzhou Normal University, Hangzhou 311121, China; 2024112032014@stu.hznu.edu.cn 
700 1 |a Sun Shuifa  |u School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China; 2024111011029@stu.hznu.edu.cn (Q.Y.); 2024112011060@stu.hznu.edu.cn (L.L.); watersun@hznu.edu.cn (S.S.) 
700 1 |a Wang, Ben  |u School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China; 2024111011029@stu.hznu.edu.cn (Q.Y.); 2024112011060@stu.hznu.edu.cn (L.L.); watersun@hznu.edu.cn (S.S.) 
773 0 |t Mathematics  |g vol. 13, no. 9 (2025), p. 1439 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203211403/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3203211403/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203211403/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch