An Active-Set Algorithm for Convex Quadratic Programming Subject to Box Constraints with Applications in Non-Linear Optimization and Machine Learning

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 9 (2025), p. 1467
Autor principal: Vogklis Konstantinos
Otros Autores: Lagaris, Isaac E
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3203211405
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13091467  |2 doi 
035 |a 3203211405 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Vogklis Konstantinos  |u Department of Tourism, Ionian University, 49100 Kerkira, Greece 
245 1 |a An Active-Set Algorithm for Convex Quadratic Programming Subject to Box Constraints with Applications in Non-Linear Optimization and Machine Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A quadratic programming problem with positive definite Hessian subject to box constraints is solved, using an active-set approach. Convex quadratic programming (QP) problems with box constraints appear quite frequently in various real-world applications. The proposed method employs an active-set strategy with Lagrange multipliers, demonstrating rapid convergence. The algorithm, at each iteration, modifies both the minimization parameters in the primal space and the Lagrange multipliers in the dual space. The algorithm is particularly well suited for machine learning, scientific computing, and engineering applications that require solving box constraint QP subproblems efficiently. Key use cases include Support Vector Machines (SVMs), reinforcement learning, portfolio optimization, and trust-region methods in non-linear programming. Extensive numerical experiments demonstrate the method’s superior performance in handling large-scale problems, making it an ideal choice for contemporary optimization tasks. To encourage and facilitate its adoption, the implementation is available in multiple programming languages, ensuring easy integration into existing optimization frameworks. 
653 |a Machine learning 
653 |a Lagrange multiplier 
653 |a Support vector machines 
653 |a Optimization techniques 
653 |a Programming languages 
653 |a Quadratic programming 
653 |a Optimization 
653 |a Variables 
653 |a Parameter modification 
653 |a Algorithms 
653 |a Methods 
653 |a Asset allocation 
653 |a Constraints 
653 |a Radiation 
653 |a Nonlinear programming 
700 1 |a Lagaris, Isaac E  |u Department of Computer Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; lagaris@uoi.gr 
773 0 |t Mathematics  |g vol. 13, no. 9 (2025), p. 1467 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203211405/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3203211405/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203211405/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch