Direct Solution of Inverse Steady-State Heat Transfer Problems by Improved Coupled Radial Basis Function Collocation Method

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 9 (2025), p. 1423
Autor principal: Yuan Chunting
Otros Autores: Zhang, Chao, Zhang Yaoming
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3203211654
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13091423  |2 doi 
035 |a 3203211654 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Yuan Chunting 
245 1 |a Direct Solution of Inverse Steady-State Heat Transfer Problems by Improved Coupled Radial Basis Function Collocation Method 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents an improved coupled radial basis function (ICRBF) approach for solving inverse steady-state heat conduction problems. The proposed method combines infinitely smooth Gaussian radial basis functions with a real-valued mth-order conical spline, where m serves as a coupling index. Unlike the original coupled RBF approach, which relied on multiquadric RBFs paired with a fixed fifth-order spline or later integer-order extensions, our real-order spline generalization enhances accuracy and simplifies the tuning of m. We present a particle swarm optimization approach to optimize the coupling index m. This work represents the first application of the CRBF framework to inverse steady-state heat conduction problems. The ICRBF methodology addresses three key limitations of traditional RBF frameworks: (1) it resolves the persistent issue of shape parameter selection in global RBF methods; (2) it inherently produces well-posed linear systems that can be solved directly, avoiding the need for the regularization typically required in inverse problems; and (3) it delivers superior accuracy compared to existing approaches. Extensive numerical experiments on benchmark problems demonstrate that the proposed method achieves high accuracy and robust numerical stability in solving steady-state heat conduction Cauchy inverse problems, even under significant noise contamination. 
653 |a Regularization 
653 |a Particle swarm optimization 
653 |a Accuracy 
653 |a Partial differential equations 
653 |a Conductive heat transfer 
653 |a Mathematical analysis 
653 |a Radial basis function 
653 |a Parameter identification 
653 |a Iterative methods 
653 |a Inverse problems 
653 |a Conduction heating 
653 |a Nondestructive testing 
653 |a Steady state 
653 |a Collocation methods 
653 |a Linear systems 
653 |a Regularization methods 
653 |a Numerical analysis 
653 |a Finite element analysis 
653 |a Numerical stability 
653 |a Boundary conditions 
653 |a Coupling 
700 1 |a Zhang, Chao 
700 1 |a Zhang Yaoming 
773 0 |t Mathematics  |g vol. 13, no. 9 (2025), p. 1423 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203211654/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3203211654/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203211654/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch