Investigating Floating-Gate Topology Influence on van der Waals Memory Performance

Salvato in:
Dettagli Bibliografici
Pubblicato in:Nanomaterials vol. 15, no. 9 (2025), p. 666
Autore principale: Zheng, Hao
Altri autori: Qin Yusang, Gao Caifang, Fang Junyi, Zou Yifeng, Li, Mengjiao, Zhang, Jianhua
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3203213985
003 UK-CbPIL
022 |a 2079-4991 
024 7 |a 10.3390/nano15090666  |2 doi 
035 |a 3203213985 
045 2 |b d20250101  |b d20251231 
084 |a 231543  |2 nlm 
100 1 |a Zheng, Hao 
245 1 |a Investigating Floating-Gate Topology Influence on van der Waals Memory Performance 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a As a critical storage technology, the material selection and structural design of flash memory devices are pivotal to their storage density and operational characteristics. Although van der Waals materials can potentially take over the scaling roadmap of silicon-based technologies, the scaling mechanisms and optimization principles at low-dimensional scales remain to be systematically unveiled. In this study, we experimentally demonstrated that the floating-gate length can significantly affect the memory window characteristics of memory devices. Experiments involving various floating-gate and tunneling-layer configurations, combined with TCAD simulations, were conducted to reveal the electrostatic coupling behaviors between floating gate and source/drain electrodes during shaping of the charge storage capabilities. Fundamental performance characteristics of the designed memory devices, including a large memory ratio (82.25%), good retention (>50,000 s, 8 states), and considerable endurance characteristics (>2000 cycles), further validate the role of floating-gate topological structures in manipulating low-dimensional memory devices, offering valuable insights to drive the development of next-generation memory technologies. 
653 |a Cognitive ability 
653 |a Memory devices 
653 |a Structural engineering 
653 |a Materials selection 
653 |a Flash memory (computers) 
653 |a Structural design 
653 |a Topology 
653 |a Data storage 
653 |a Investigations 
653 |a Electrodes 
653 |a Trends 
653 |a Performance characteristics 
700 1 |a Qin Yusang 
700 1 |a Gao Caifang 
700 1 |a Fang Junyi 
700 1 |a Zou Yifeng 
700 1 |a Li, Mengjiao 
700 1 |a Zhang, Jianhua 
773 0 |t Nanomaterials  |g vol. 15, no. 9 (2025), p. 666 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203213985/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3203213985/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203213985/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch