Post-Processing Optimization of the Global 30 m Land Cover Dynamic Monitoring Product

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 9 (2025), p. 1558
Autor principal: Li, Zhehua
Otros Autores: Zhang, Xiao, Liu, Wendi, Zhao, Tingting, Ai Weitao, Wang, Jinqing, Liu Liangyun
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3203224768
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17091558  |2 doi 
035 |a 3203224768 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Li, Zhehua  |u Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, Chinaliuly@radi.ac.cn (L.L.) 
245 1 |a Post-Processing Optimization of the Global 30 m Land Cover Dynamic Monitoring Product 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Post-processing optimization refers to the refinement of land cover products by applying specific rules or algorithms to minimize erroneous changes in land cover types caused by classification uncertainty or interannual phenological variations. Global land cover (GLC) mapping has gained significant attention over the past decade, but current GLC time-series products suffer from considerable inconsistencies in mapping results between different epochs, leading to severe erroneous changes. Here, we aimed to design a novel post-processing approach by combining multi-source data to optimize the GLC_FCS30D product, which represents a groundbreaking improvement in GLC dynamic mapping at a resolution of 30 m. First, spatiotemporal filtering with a window size of 3 × 3 × 3 was applied to reduce the “salt-and-pepper” effect. Second, a temporal consistency optimization algorithm based on LandTrendr was used to identify land cover changes across the entire time series and eliminate excessively frequent erroneous changes. Third, certain land cover transitions between easily misclassified types were optimized using logical rules and multi-source data. Specifically, the illogical wetland-related transitions (wetland–water and wetland–forest) were corrected using a simple replacement rule. To address the noticeable erroneous changes in arid and semi-arid regions, the erroneous land cover transitions involving bare areas, sparse vegetation, grassland, and shrubland were corrected by combining NDVI and precipitation data. Finally, the performance of our post-processing optimization approach was evaluated and quantified. The proposed approach successfully reduced the cumulative change area from 7537.00 million hectares (Mha) in the GLC_FCS30D product without optimization to 1981.00 Mha in the GLC_FCS30D product with optimization, eliminating 5556.00 Mha of erroneous changes across 26 epochs. Furthermore, the overall accuracy of the mapping was also improved from 73.04% to 74.24% for the Land Cover Classification System (LCCS) level-1 validation system. Erroneous changes in GLC_FCS30D were considerably mitigated with the post-processing optimization method, providing more reliable insights into GLC changes from 1985 to 2022 at a 30 m resolution. 
610 4 |a National Aeronautics & Space Administration--NASA 
651 4 |a United States--US 
653 |a Accuracy 
653 |a Datasets 
653 |a Classification 
653 |a Algorithms 
653 |a Arid zones 
653 |a Grasslands 
653 |a Wetlands 
653 |a Optimization 
653 |a Mapping 
653 |a Hydrologic data 
653 |a Land cover 
653 |a Landsat satellites 
653 |a Vegetation 
653 |a Remote sensing 
653 |a Time series 
653 |a Arid regions 
653 |a Semiarid zones 
653 |a Semi arid areas 
700 1 |a Zhang, Xiao  |u Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, Chinaliuly@radi.ac.cn (L.L.) 
700 1 |a Liu, Wendi  |u Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, Chinaliuly@radi.ac.cn (L.L.) 
700 1 |a Zhao, Tingting  |u Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, Chinaliuly@radi.ac.cn (L.L.) 
700 1 |a Ai Weitao  |u Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, Chinaliuly@radi.ac.cn (L.L.) 
700 1 |a Wang, Jinqing  |u Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, Chinaliuly@radi.ac.cn (L.L.) 
700 1 |a Liu Liangyun  |u Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, Chinaliuly@radi.ac.cn (L.L.) 
773 0 |t Remote Sensing  |g vol. 17, no. 9 (2025), p. 1558 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203224768/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3203224768/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203224768/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch