Adversarial machine learning: a review of methods, tools, and critical industry sectors

Guardat en:
Dades bibliogràfiques
Publicat a:The Artificial Intelligence Review vol. 58, no. 8 (Aug 2025), p. 226
Autor principal: Pelekis, Sotiris
Altres autors: Koutroubas, Thanos, Blika, Afroditi, Berdelis, Anastasis, Karakolis, Evangelos, Ntanos, Christos, Spiliotis, Evangelos, Askounis, Dimitris
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3203333555
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11147-4  |2 doi 
035 |a 3203333555 
045 2 |b d20250801  |b d20250831 
084 |a 68693  |2 nlm 
100 1 |a Pelekis, Sotiris  |u National Technical University of Athens, Decision Support Systems Laboratory, School of Electrical and Computer Engineering, Athens, Greece (GRID:grid.4241.3) (ISNI:0000 0001 2185 9808) 
245 1 |a Adversarial machine learning: a review of methods, tools, and critical industry sectors 
260 |b Springer Nature B.V.  |c Aug 2025 
513 |a Journal Article 
520 3 |a The rapid advancement of Artificial Intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), has produced high-performance models widely used in various applications, ranging from image recognition and chatbots to autonomous driving and smart grid systems. However, security threats arise from the vulnerabilities of ML models to adversarial attacks and data poisoning, posing risks such as system malfunctions and decision errors. Meanwhile, data privacy concerns arise, especially with personal data being used in model training, which can lead to data breaches. This paper surveys the Adversarial Machine Learning (AML) landscape in modern AI systems, while focusing on the dual aspects of robustness and privacy. Initially, we explore adversarial attacks and defenses using comprehensive taxonomies. Subsequently, we investigate robustness benchmarks alongside open-source AML technologies and software tools that ML system stakeholders can use to develop robust AI systems. Lastly, we delve into the landscape of AML in four industry fields –automotive, digital healthcare, electrical power and energy systems (EPES), and Large Language Model (LLM)-based Natural Language Processing (NLP) systems– analyzing attacks, defenses, and evaluation concepts, thereby offering a holistic view of the modern AI-reliant industry and promoting enhanced ML robustness and privacy preservation in the future. 
653 |a Machine learning 
653 |a Large language models 
653 |a Artificial intelligence 
653 |a Privacy 
653 |a Taxonomy 
653 |a Image processing systems 
653 |a Smart grid 
653 |a Deep learning 
653 |a Natural language processing 
653 |a Software 
653 |a Robustness 
653 |a Errors 
653 |a Health services 
653 |a Poisoning 
653 |a Automobile industry 
653 |a Health care 
653 |a Human-computer interaction 
653 |a Data 
653 |a Landscape 
653 |a Preservation 
653 |a Language modeling 
700 1 |a Koutroubas, Thanos  |u National Technical University of Athens, Decision Support Systems Laboratory, School of Electrical and Computer Engineering, Athens, Greece (GRID:grid.4241.3) (ISNI:0000 0001 2185 9808) 
700 1 |a Blika, Afroditi  |u National Technical University of Athens, Decision Support Systems Laboratory, School of Electrical and Computer Engineering, Athens, Greece (GRID:grid.4241.3) (ISNI:0000 0001 2185 9808) 
700 1 |a Berdelis, Anastasis  |u Superbo AI, Athens, Greece (GRID:grid.4241.3) 
700 1 |a Karakolis, Evangelos  |u National Technical University of Athens, Decision Support Systems Laboratory, School of Electrical and Computer Engineering, Athens, Greece (GRID:grid.4241.3) (ISNI:0000 0001 2185 9808) 
700 1 |a Ntanos, Christos  |u National Technical University of Athens, Decision Support Systems Laboratory, School of Electrical and Computer Engineering, Athens, Greece (GRID:grid.4241.3) (ISNI:0000 0001 2185 9808) 
700 1 |a Spiliotis, Evangelos  |u National Technical University of Athens, Decision Support Systems Laboratory, School of Electrical and Computer Engineering, Athens, Greece (GRID:grid.4241.3) (ISNI:0000 0001 2185 9808) 
700 1 |a Askounis, Dimitris  |u National Technical University of Athens, Decision Support Systems Laboratory, School of Electrical and Computer Engineering, Athens, Greece (GRID:grid.4241.3) (ISNI:0000 0001 2185 9808) 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 8 (Aug 2025), p. 226 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203333555/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3203333555/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203333555/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch